DRAFT ISO/IEC 14496-10 : 2002 (E)

Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG Document: JVT-G050rl
(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) Filename: JVT-G050rl.doc
g Meeting: Geneva, Switzerland, 23-27 May, 2003
Title: Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC)
Status: Approved Output Document of JVT [Geneva 27 May 2003]
Purpose: Text
Author(s) or Thomas Wiegand
Contact(s): Heinrich Hertz Institute (FhG), Tel: +49 - 30 - 31002 617
Einsteinufer 37, D-10587 Berlin, Fax: +49-30-392 7200
Germany Email: wiegand@hhi.de
Gary Sullivan
Microsoft Corporation Tel: +1 (425) 703-5308
One Microsoft Way Fax: +1(425) 706-7329
Redmond, WA 98052 USA Email: garysull@microsoft.com

Ajay Luthra

Motorola Corporation lglx +1 (858) 404 3470

6420 Sequence Drive - +1(858) 404 2501

San Diego, CA 92121 USA Email: zluthra@motorola.com
Source: Editor

[Ed. Notes:

Contains changes for JVT-H010 (Microsoft last call comment document, which was addressed taking into account
remarks on that last call document from some US experts as found in JVT-H020), JVT-HO11 (Nokia last call comment
document), JVT-HO025 (clarification remarks from MEI), and JVT-HO30 (clarification remarks from Microsoft). The
Toshiba and CIAJ last call comments were not addressed distinctly, as they are redundant with content of the Microsoft
last call commentsin JVT-HO10.

Change actions are as noted in JVT-HO11WithNotes rl.doc, JVT-H020WithNotes rl.doc, JVT-H025WithNotes.doc,
JVT-HO30WithNotes.doc.

]

Title pageto be provided by ITU-T | ISO/IEC

DRAFT INTERNATIONAL STANDARD
DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E)
DRAFT ITU-T RECOMMENDATION

TABLE OF CONTENTS
[0 =YLV o] (o R xi
O 0 oo [Tt {0 o NPT Xii

DRAFT ITU-T Rec. H.264 (2002 E) i

DRAFT ISO/IEC 14496-10 : 2002 (E)

a b~ WN B

7

O R o [T 1= TP Xii
0.2 PUIMPOSE. ...ttt sttt sttt s h bt s e s e e s s et e R e R e Rt e s e e e e R e AR e AR e AR £ AR e e R e e e e R e e R e AR e AR e e R e eR R e e R e R Rt R Rt R e nenne s Xii
LG T Yoo [or= L4 [0 = J USSP Xii
0.4 Profil@S@nd IEVEIS........c.ooieeeie s Xii
0.5 Overview of the design CharaCtEriSlICS.....ccuiiieii ettt e e e e s raesre e s reereennas Xiii
0.5.1 L (=0 (1o T A= 0o |1 TSR Xiii
0.5.2 Coding of progressive and iNterlaCed VIAEO.coiiiiiiiiiiee e Xiii
0.5.3 Picture partitioning into macroblocks and smaller partitions.............ccoeverrieie e Xiii
054 Spatial redundanCy FEAUCLION.orueiiirieieerieere ettt st b et b et be e Xiv
0.6 Howto read thisS SPECITICALIONc.coiiieiiiries bbbttt e Xiv
R oo o[PS PP PR PPUPPURURPR 1

N o Lo AR =T = 1 = TSRS 1
DS 1T A Lo] TSP S TSP 1

F Y o] o = LA T 1 TSP PRSP P RPN 8
(@101 01§ o 01 S 8
TN A A g} g0 = (o0l o= = L0 SO SORUTSPRP 8
I Moo o oo = = L0 SOOI 9
5.3 REIGHONAI OPEIBIOIS ... uiitiieiiitireeieie ettt bbbt b e b e st s b et e ae b e bt be bbbt e 9
SN) VL Y o]0 < L0 TSSOSO 9
5.5 ASSIGNIMENT OPEIBLOIS ...vetiitirieeuieieetesteste bt st ett et e tesee bt sbesaeeae e e eseeseesbeebeeheeh e e e easeaeeeEesbeebeebeeaeanseseeabesbesaesbenneeneeneans 9
L ST = g To = 1) =11) o U 10
57 MathematiCal FUNCHIONS........cciirieiiireeist ettt et e e b e bt n e n e 10
5.8 Variables, syntax elements, and tablES.............ooiiiiiii i e 10
5.9 Text description Of 10giCal OPEIAIONSccceiiiriirierie sttt sttt st st sb et e et s ae b e s besaeebe e e e e s 11
5,10 PrOCESSESueiuiiiiitiiti ittt b e R R R R R R R bR a e r e 12
Sour ce, coded, decoded and output data formats, scanning processes, and neighbouring relationships.......... 12
LN A L S 1= g 0 0] 0 7= LTSS PE PSPPSR 12
6.2 Source, decoded, and OULPUL PICLUFE FOIMALS..........eiuiiirierieiere ettt bbb b e e 13
6.3 Spatial subdivision Of PICLUrES AN SHICEScc.eeiuiiirieierieee ettt e e sb e be st se e e 15
6.4 Inverse scanning processes and derivation processes for NeighDOUIS...........cooiiiiinenenieneiee e 16
6.4.1 INverse macrobl OCK SCANNING PrOCESS........couiruirtertereeiieitertestestestesieeseeseeeeseesaesbesaesae s e esseseessesbesaessesneensessens 16
6.4.2 Inverse macroblock partition and sub-macroblock partition SCanning ProCESS.........coveerererererierereerienenne 16
6.4.2.1 Inverse macroblock partition SCAaNNING PrOCESSccuvveeririeirerierieesieee sttt be e 17
6.4.2.2 Inverse sub-macroblock partition SCaNNING PrOCESS..........ccuiiiririerieireee et 17
6.4.3 Inverse 4x4 [uma blOCK SCANNING PIrOCESS........cctriiieiirieieie ettt sttt s be bt st ee et sttt bt 18
6.4.4 Derivation process of the availability for macroblock addresses...........cccvvveeiincinencinenecees 18
6.4.5 Derivation process for neighbouring macroblock addresses and their availability...........ccocooninienicnnen. 18
6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames....... 19
6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions............ccccooeiiniiinnienienenn, 20
6.4.7.1 Derivation process for neighbouring MacroblOCKScoeiiiiiiiiiie e 20
6.4.7.2 Derivation process for neighbouring 8x8 lUMablOCKccoeriiiiiiii e 21
6.4.7.3 Derivation process for neighbouring 4x4 1TumablOCKSccoeririiiiiinee e 21
6.4.7.4 Derivation process for neighbouring 4x4 chromablocks ... 22
6.4.7.5 Derivation process for Neighbouring PartitioNS..........ccoerriririrereneee e 22
6.4.8 Derivation process for neighbouring [OCEHIONScoeiiiricirieere e 23
6.4.8.1 Specification for neighbouring lumalocationsin fields and non-MBAFF frames...........ccccvevvevecvenennnn. 24
6.4.8.2 Specification for neighbouring lumalocationsin MBAFF frames..........ccccvveiiinnineneiseeeseniees 24
YLz P =T [0 IR = 0 0 =L Ao 26
7.1 Method of describing syntax in talular fOrM...........coeiiriii e 26
7.2 Specification of syntax functions, categories, and ESCIIPLOrScoveerirrirerieere e 27
7.3 SYNEAX TN tADUIAE FOIM...iiiiiiiitie bbbt b e bbbt bbb bt e et ens 29
731 INAL UNIT SYNEBX ...ttt sttt sttt sttt sttt e b e bt b e b e st eb e s b e seebe s b e s e e bt sbeseebesbene ekt sbeseebe st e neebesbeneebens 29
7.3.2 Raw byte sequence payloads and RBSP trailing DitS SyNtaX..........cccuereverireinensieneneeseneeese s 30
7.3.2.1 Sequence parameter SEt RBSP SYNEBX.........ccceiieirieiiieiirie et e e se s sre b b sseessee s e sbeesnesneesaeesnes 30
7.3.22 Picture parameter Set RBSP SYNEBX........cciiiirerieieieesie ettt be bbb e e et bbb e e neeneas 31
7.3.2.3 Supplemental enhancement information RBSP SyNtaX..........cccceoeiiiiiiniiinenee e 32
7.3.23.1 Supplemental enhancement information MESSAgE SYNEAXcccerververieriererieeieereerie e eee s 32
7.3.2.4 Access unit delimiter RBSP SYNLBX........ccceiiiiieiiieieeiesieseeseesteestessaesseesseesseesteensesssessaessaesseessessssnnesnns 32
7.3.25 ENd of SEqUENCE RBSP SYNLAXccuiiiiitiitiiieiieieee ettt st sb b e e e e 32
7.3.2.6 ENd Of SIream RBSP SYNEAXcoueiiiriiiiirieieieries sttt sttt sttt 33
7.3.27 FIller dataRBSP SYNEBXccueuiiiiriiirierieiisiesiees sttt sttt bbbt b et b et b ettt 33

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.3.2.8 Slice layer without partitioning RBSP SYNEAX........cc.ccieriririeririreieesieie st 33
7.3.29 Slicedatapartition RBSP SYNIAXcceviiriiiiiriiisesieees ettt bbb 33
7.3.29.1 Slicedatapartition A RBSP SYNEAX........cociririieiiriiniesie sttt s sbe s e e 33
7.3.29.2 Slicedatapartition B RBSP SYNEAX........ccireriieiieriiriesie sttt sttt e e e e b sse e eee s 33
7.3.29.3 Slicedatapartition C RBSP SYNEAX........citririieieriiniesiesiesieseeee et sre s e se e e b b sse e e e enee s 34
7.3.2.10 RBSP dicetrailing bitS SYMIAX.......ccccciiiciiiieiiciieeee ettt sttt sra e s reesaeesreenesaeeenes 34
7.3.211 RBSPrailing DItS SYNBXc.ccerveviuiririeirieieisieieiese ettt sttt sttt sn b 34
733 S ool == 0 L= RS Y 1= ST 35
7.3.3.1 Reference picture list reordering SYNEAXccecererererieriririeee sttt st 36
7.3.32 Prediction Weght tahl€ SYNEEXcccoiriiiiirieierieeesie bbb 37
7.3.3.3 Decoded reference picture Marking SYNEAXcoeveerieriririenieeseseee st 38
734 SHICE AAEA SYNEAX ...ttt b bbbt b bbbt e et e bt b e st b e b et e b b e s e e b e e e e ns 39
7.35 MECIODIOCK [QYEN SYNEAXe.ectiriiietiite ettt bbbt sb e et b e e b st se bt neebens 40
7.35.1 Macroblock PrediCtion SYMEBX........cceririreieeereete ettt sb e bbbt e e e e besbesbesbe e e sseeneeneas 41
7.3.5.2 Sub-macroblOCK PrediCtion SYNEAX..........coeieeerieeieieerie ettt be b b e e e e e bbb sbesneeseeneeneas 42

A BT T = o LU= 0 = B 1= G 43
7.35.3.1 ReSidual hlOCK CAVLC SYNEAX ...c.ccurueirerieiiririeeresieiesesie sttt b e sbe s e se b s sssnese e snns 44
7.35.3.2 Residual bloCK CABAC SYNEBX........cueiririeiiririeeresieiesesie e sesiese sttt et et b e n e e enns 45

A S < 1= 1 o1 TSP TP PSPPSR 46
74.1 NAL UNIT SEMEBINLICS ...ttt sttt sttt sttt b e bt b e b s e bt s b e s e e bt s b e se e bt sbese ek e s b e seebe st e neebenbeneebens 46
7.4.11 Encapsulation of an SODB within an RBSP (infOrmatiVe)ccceeriririirineiseneesese e 48
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences.................... 49
7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation...........cccocoveevieneienenienens 49
7.4.1.2.2 Order of access units and association to coded Video SEQUENCEScccvereerereeeniereese s 49
7.4.1.2.3 Order of NAL units and coded pictures and association t0 aCCESS UNItS.........coveerereeriereeeneneenens 50
7.4.1.2.4 Detection of thefirst VCL NAL unit of aprimary coded piCture..........ccoceeveeneneneneneneneeeee 51
7.4.1.25 Order of VCL NAL units and association to coded PiCIUrES...........ccoeverereeieneene e 51
7.4.2 Raw byte sequence payloads and RBSP trailing bits SemantiCs..........ccoverereienenienieee e 52
7421 Sequence parameter Set RBSP SEMENLICS......cc.eiiiiiiiiiiie e 52
7.4.2.2 Picture parameter Set RBSP SEMANTICSoiueierieieieeiie ettt st s ne s 54
7.4.2.3 Supplemental enhancement information RBSP SEMANLICScccoiiiieiiiiiiineiee e 56
7.42.3.1 Supplemental enhancement information Message SEMaNtiCS......c.cvvreerireeenereeere e 56
7424 Accessunit delimiter RBSP SEMANTICSciuiiiiriiiririereseese st 56
7.425 ENd of sequence RBSP SEMENTICS.......coiiiiriiiririeieesie sttt sttt st 57
7.42.6 ENd of Stream RBSP SEMANTICS......ccoiriiiiirieieer ettt 57
7427 Filler dataRBSP SEMANTICS.coiitiiriirieiirierieieie sttt b et b et b ettt nb e 57
7.4.2.8 Slicelayer without partitioning RBSP SEMANTICSc.coeriieririeieeie et 57
7429 Slicedatapartition RBSP SEMENLICS........coiiiiriiieieie et 57
74291 Slicedatapartition A RBSP SEMENTICScoerieiiriinierie ettt sbe e e e 57
7.4.29.2 Slicedatapartition B RBSP SEMANtICS.......cceriiiiriiriirie ettt 57
7.4.29.3 Slicedatapartition C RBSP SEMANTICS.......cceriiiiiriiniirie it 58
7.4.2.10 RBSPdlicetrailling bitS SEMaNtiCS........cccuiiiiieeiice ettt re e sre e aesaeeenes 58
74211 RBSPrailing bitS SEMANTICS.c..eoiiiriiiiirieieer ettt 58
743 SliCE NEAHEN SEMANTICSv ittt bbbttt b e bbb b b ens 58
7431 Reference picture list reordering SEMENTICScoevririerirereees ettt 63
7.4.3.2 Prediction weight tahle SEMANTICS.......coeiiiiiiriree bbb e 64
7.4.3.3 Decoded reference picture Marking SEMEaNtiCS.......c..eviveiririeiiereriee e 65
744 SlICE UAEA SEIMEBNLICS ... ettt bbbt bbb e e st bt e e st b e s b et e bt b n e e b e e e nnas 67
7.4.5 MaCroblOCK 1@YEr SEMANMLICScceiiieiiece et e s et e e te e s e e aeesraesreesreeneennesnes 68
7451 Macroblock prediCtion SEMANTICScoiieiiierieie ettt se et bbb ae e e e e eneas 74
7.4.5.2 Sub-macroblock prediCtion SEMEANTICScc.cierieieieeie et b e bbb e ne e 74
7.453 ReSIAUAl a8 SEMAINTICS.......ccveueieireeertirtei sttt bt b e r et b et r e n et renne s 77
7.45.3.1 Residual block CAVLC SEMANLICS.c.covruruiririeirirteiesisie sttt ettt ne e enns 77
7.453.2 Residual block CABAC SEMANTICS......c.ciirieiiriiieiiie ettt sttt b st sbeseenens 78

(D= ot o [T I o] ool =SS USSR 78
8.1 NAL UNIt AECOUING PrOCESS ... ccueetitertestestereeeestestesaesbesbe st esee s eseseesbeebesaease e s easesbeabesbeaaeesee s e beseesbesbesaeeneenneneees 79
SIS Lo =Y oo o [aTo [o] oot ST TSP 79
8.21 Decoding process for PiCtUrE OFAEY COUNLoiuiiuirireeiee ettt b e et bbb e se e e 79
8.21.1 Decoding process for picture order COUNE tYPE 0oiuiiueruiriererieieeie ettt 81
8.2.1.2 Decoding process for picture order COUNE tYPE Lc.ovuiiririeieerieiee et 81
8.2.1.3 Decoding process for piCture order COUNE tYPE 2c.evveiriirieieerieeeesieee sttt 82
8.2.2 Decoding process for macroblock t0 SliCe GrOUDP M@ovveueriirieirierieerie ettt 83
8.2.2.1 Specification for interleaved Slice group MaP tYPE......o.eeririerirereeese st 84

DRAFT ITU-T Rec. H.264 (2002 E) iii

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.2.2.2 Specification for dispersed Slice group MaP tYPE......c.cvveeririeirereree et 84
8.2.2.3 Specification for foreground with left-over slice group Map type........ccoveeverevninecnenese e 85
8.2.2.4 Specification for box-0ut SliCe group MaP LYPES........oouireriirereeie ettt sbe e e e 85
8.2.2.5 Specification for raster scan Slice group MaP LYPEScoueeuerererieieeie ettt e e sre e e e 86
8.2.2.6 Specification for wipe SliCe group Map tYPESceueeriiriererierie sttt s s se e see s 86
8.2.2.7 Specification for expliCit SliCe group MaPD TYPE.......ooueiirerireieeie et s 86
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 86
8.2.3 Decoding process for slice data partitioningcoeeoeeierirere e e 86
8.24 Decoding process for reference picture listS CONSIIUCLION...........ovveeererieerenieise s 87
8.2.4.1 Decoding process for PiCtUIE NUIMDEIS..........coiririeiririeieeseee ettt 88
8.2.4.2 Initialisation process for reference PICtUrE lSES......cuviiiiririeieeree e e 88
8.24.2.1 Initialisation process for the reference picture list for P and SP dlicesin frames..........ccoceevvveenne. 89
8.2.4.2.2 Initialisation process for the reference picture list for Pand SP dlicesin fields.........ccoocveevinnene, 89
8.2.4.2.3 Initialisation process for reference picture listsfor B slicesin frames.........ccocccoeveviiiiinncciene Q0
8.24.2.4 Initialisation process for reference picture listsfor B dicesin fields.........cooeoeieiiiiiiinniciee Q0
8.2.4.25 Initialisation process for reference picture listsin fields. ..o 91
8.24.3 Reordering process for reference PICUrE liStS..... ..o 92
8.24.3.1 Reordering process of reference picture lists for short-term piCtures...........ceceeereneneneneneeceneene 92
8.2.4.3.2 Reordering process of reference picture lists for long-term pictures..........cocceeeeeereneneseneneeeienens 93
8.25 Decoded reference picture Marking PrOCESScovcuirierieierierieiesie sttt sttt bbb b seenens 93
8.25.1 Sequence of operations for decoded reference picture marking ProCess..........ecvereeerenerenieneresesieenns 94
8.25.2 Decoding process for gaps in frame NUML........ccoviiriiiineese e 94
8.25.3 Sliding window decoded reference picture marking ProCeSS.........coevreieerenieiesenee e 94
8.25.4 Adaptive memory control decoded reference picture marking ProCESS.........ooevreriererenieiesienieese e 95
8.25.4.1 Marking process of ashort-term picture as “unused for reference”coovvvevceveniencencencenceeceneens 95
8.25.4.2 Marking process of along-term picture as“unused for reference”cocooeeeierenenenenenceeee 95
8.25.4.3 Assignment process of aLongTermFramel dx to a short-term reference picture..........c.ceoeeeeeeeenne 96
8.25.4.4 Decoding process for MaxLongTermFrameldXccoeeeeeririeeie e 96
8.25.45 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFramel dx to “no long-term frame iNAICESoovecieci e 96
8.25.4.6 Processfor assigning along-term frame index to the current PiCture..........ccoceeerenineienencccene 96
8.3 INLra PrEdiCliON PrOCESS.cueitirieiirtireeieste sttt sttt sttt b et b e s bt bbbt e et b e s e e st e bt s b e st e bt s b e st eb e st eneebenbeneenes 97
831 Intra_4x4 prediction process for IUMa SAMPIES.........coiiriiriee e e 97
8.3.1.1 Derivation process for the INtradX4APredMOCE.coouiiririiirireeer e 97
8.3.1.2 Intra4x4 SAMPIE PrediClioN........cccocviiriiirerieieer et bbbt 99
8.3.1.2.1 Specification of Intra_4x4_Vertical prediction MOde.........cocoveeiireinincinereese e 100
8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction MOE..........cccooeiireneniiieee e 100
8.3.1.2.3 Specification of Intra_4x4 DC prediction MOTEcooeiererieiiereseseeeeee e 100
8.3.1.24 Specification of Intra_4x4 Diagonal_Down_Left prediction mode..........cccceeverenenenienenneenienn 100
8.3.1.25 Specification of Intra_4x4 Diagonal_Down_Right prediction mode............ccccoevinenencnienneenienn 101
8.3.1.2.6 Specification of Intra_4x4 Vertica_Right prediction Modeccocevererirneieneneneseeeeeee 101
8.3.1.2.7 Specification of Intra_4x4 Horizontal _Down prediction Mode...........coceveeerneieneneneneeeeeeies 101
8.3.1.2.8 Specification of Intra_4x4_Vertical_Left prediction mode...........cooeeveveinincinincnenecnenee 102
8.3.1.2.9 Specification of Intra_4x4 _Horizontal_Up prediction MOde...........coevereeneneinieneeneneeesieneeiens 102
8.3.2 Intra_16x16 prediction process for luUMa SAMPIES...........ocviiriiiiiee e 102
8.3.21 Specification of Intra_16x16_Vertical prediction MOE...........ccoveirireinineresere s 103
8.3.2.2 Specification of Intra_16x16_Horizontal prediction MOdE...........ccvereenireirenierees s 103
8.3.2.3 Specification of Intra_16x16_DC prediction MOUEccurueeririeiririererere s 103
8.3.24 Specification of Intra_16x16 Plane prediCtion MOE...........coeriereireiiiesereeee e 104
8.3.3 Intra prediction process for Chroma SAMPIESc..eiiiiiieie e 104
8.3.3.1 Specification of Intra_Chroma _DC prediCtion MOcoceeieriiiirinereseee e 105
8.3.3.2 Specification of Intra_Chroma_Horizontal prediction MOde...........cccooiieieneniiieeeese e 106
8.3.3.3 Specification of Intra_Chroma_Vertical prediction MOde..........ccooeieiiieneneneeeee e 106
8.3.34 Specification of Intra_Chroma_Plane prediction MOdE...........ovveiririininereserees s 106
834 Sample construction process for |_PCM macroblOCKScooveiiiriinincne e 107
8.4 NN PrEdiCliON PIrOCESS. .. c.ectiitiietertereete st sttt s ettt sttt st et be s b re bt b e st ebe s b e se bt e b e se ekt eb e st eb e s b e st ebe et e neeb e st e neebenbeneenens 107
841 Derivation process for motion vector components and reference indiCes..........coovvvvervenernenenseneenn 109
8.4.1.1 Derivation process for luma motion vectors for skipped macroblocksin P and SP dlices.................... 110
8.4.1.2 Derivation process for lumamotion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8........... 110
8.4.1.21 Derivation process for the co-located 4x4 sub-macroblock partitions............cccceeverererenierreeniene 110

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode ... 113
8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode114
8.4.1.3 Derivation process for luma motion VECtor PrediCtion...........c.cceeereereiereneneeeeeee e 116

iv DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.4.1.3.1 Derivation process for median luma motion vector predictionccoeevereinenenenseneneeiens 117
8.4.1.3.2 Derivation process for motion data of neighbouring partitions...........c.cceeeevereieneneineneeseneens 118
8.4.1.4 Derivation process for Chroma MOtiON VECIOIScciiiieririeiereesie st e e 119
8.4.2 Decoding process for Inter prediction SAMPIES..........coiiiiiiiie e e 119
8.4.21 Reference PiCture SElECHION PrOCESSuiiitirereeiereerie ettt sttt et sttt be st be e e beseesbesbesbesaeeeenseneens 120
8.4.2.2 Fractional sample iNterpolation PrOCESS........cccieeieriirieriesiesie sttt sbe e sse e sae e sbesbesbesaeeeeeeneens 121
8.4.221 Lumasampleinterpolation PrOCESS.........iieririrrierie ettt st be bt se e e b see b sbesaesbe e e e es 121
8.4.2.2.2 Chroma sample iNterpolation PrOCESScoceeerriererierieriere ettt st st e e see b sbe e sae e e e s 123
8.4.2.3 Weighted sample PrediClion PrOCESS........c.cuviiiirieeririeirie ettt sttt ens 124
8.4.2.3.1 Default weighted sample prediClion PrOCESS.........cov i seeaens 125
8.4.2.32 Weighted sample prediCtion PrOCESS.........ccuiriiririeere sttt be e seene s 125
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process.127
85.1 Specification of transform decoding process for residual BlOcks..........coooveiiincnincie 127
8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode 128
8.5.3 Specification of transform decoding process for chroma Samples..........cocovevererierere s 129
854 Inverse scanning process for transform COEffiCIENtS..........cooi i 130
855 Derivation process for the quantisation parameters and scaling funNCtion.............ccoceeevenneiencnieecienens 130
8.5.6 Scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
131
8.5.7 Scaling and transformation process for chroma DC transform coeffiCientscccovveveveerienvnceseeceenenenns 132
8.5.8 Scaling and transformation process for residual 4X4 BIOCKS........c.cooiveiiincinenee e 132
859 Picture construction process prior to deblocking filter ProCesS.........ooveiverreneinener e 134
8.6 Decoding process for P macroblocksin SP slicesor S macroblOocks........c.oovvvvvveniceeesese e 134
8.6.1 SP decoding process for NON-SWitChiNg PICTUMES..........coiiririiireire e 135
8.6.1.1 Lumatransform coefficient deCOdiNG PrOCESS........coiriririririeie ettt 135
8.6.1.2 Chromatransform coefficient deCOding PrOCESS........cccuiiiiririeieriee ettt 136
8.6.2 SP and Sl slice decoding process for SWitChing PICLUIEScc.eeeeierieriere et 138
8.6.21 Lumatransform coefficient deCOdiNG PrOCESS........coiriririririeie ettt 138
8.6.22 Chromatransform coefficient deCOding PrOCESS........cciiiiireririeriere ettt 138
8.7 DeblOCKING FIlTOr PrOCESS... ettt bbbt e e b bt sb e s bt s st e st e se et e sbesbesbesaeene e e eneas 139
871 Filtering process for DIOCK EAQGES ..o e 142
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge..........ccoovvevvivrienceecennns 143
8.7.2.1 Derivation process for the luma content dependent boundary filtering strength...........ccccooveiniieenne, 144
8.7.2.2 Derivation process for the thresholds for each block edgecoeoeviriienininre e 145
8.7.2.3 Filtering process for edges wWith BSIESSthan 4 ..o 146
8.7.2.4 Filtering process for edges for BS @qUal 10 4...........ooiiiiiiiiieieeee e 147
LS e TS Tl o] o o= TSSO 148
9.1 Parsing process for EXP-GOlOmMID COUES.........coiriiririiiiirieistesee sttt b bbb st s be b seebe s 148
911 Mapping process for signed EXP-GOolOmD COUEScccuiiirirerine e 150
9.1.2 Mapping process for coded BIOCK PALLEINcoeiiiiire e 150
9.2 CAVLC parsing process for transform CoeffiCient [EVEIS..........cociiriiiincne e 152
9.2.1 Parsing process for total number of transform coefficient levels and trailing Ones...........ccocoveeveevieeiennns 152
9.2.2 Parsing process for |eVel INfFOrMBELION ..o e 155
9.23 Parsing process for run iNfOrMBLON...........c.oiiiiii e bt b e b s s b e neen 157
9.2.4 Combining level and run iNfOrMaLioNceoii e s s ee e ens 159
9.3 CABAC parsing procCess fOr SliCE UALAccueuiririe e e 160
9.31 [NItTIBIISALION PrOCESS ... eeueeteterie sttt sttt be ettt st et e bt s bt s bt e ae st et e b e seeebeebeeheehe e e enbeseeebeebesaeene e e eneees 161
9.3.1.1 Initialisation process for context VariablES..........coeviireiriniee s 161
9.3.1.2 Initialisation process for the arithmetic decoding ENQINE..........ccoveiiiriirinee s 171
9.3.2 BiN@IIZEL ON PIrOCESS. ... ccveiteeeteriesieie sttt sttt sttt st bt bt b et b e s b et bt s b et bt s b et ekt s b et ebe s b et ebe st et sbe b st eee 171
9.3.21 Unary (U) DiNariZation PrOCESS........coirueueririeerierieesteseesessessesessesseesseseesessessesessessesessessessssessensssessenesses 173
9.3.22 Truncated unary (TU) binariZation PrOCESScoeeruerieirtirieeriesieesteseeesieseee s e sbe e esnes 173
9.3.23 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization proCess...........ccvevererererieeieennens 173
9.3.24 Fixed-length (FL) DiNarization PrOCESS.ccereeueriirierie sttt sttt e et b e b b e e e e 174
9.3.25 Binarization process for macroblock type and sub-macroblock type..........cceeeerveeiereneneneneeeeene 174
9.3.26 Binarization process for coded bIOCK Pattern...........ccooiiiiiiirieiereee e 177
9.3.2.7 Binarization process for mb_gp Aelta.......coooiiiii e 177
9.3.3 DeCOING PrOCESS FIOW...... ettt bbb e bbbt b e et e e e se et e sbesbesbe e e ensennens 177
9.3.3.1 Derivation ProCess fOr CEXIAX.......oueurireiririeinirieiste ettt 178
9.3.3.1.1 Assignment process of ctxldxInc using neighbouring syntax elements...........cccvevevenenecnenenens 180
9.3.3.1.1.1 Derivation process of ctxldxInc for the syntax element mb_skip_flag.......c.ccocevvineinenenenn 180
9.3.3.1.1.2 Derivation process of ctxldxInc for the syntax element mb_field_decoding_flag.................. 180

DRAFT ITU-T Rec. H.264 (2002 E) v

DRAFT ISO/IEC 14496-10 : 2002 (E)

9.3.3.1.1.3 Derivation process of ctxldxInc for the syntax element mb_type.......ccoevvereinineicrenieen 181
9.3.3.1.1.4 Derivation process of ctxldxInc for the syntax element coded_block_pattern............c.coueee. 181
9.3.3.1.1.5 Derivation process of ctxldxInc for the syntax element mb_gp_delta.........ccccocevenerennnne 182
9.3.3.1.1.6 Derivation process of ctxldxInc for the syntax elementsref_idx_10 and ref_idx_I1............... 182
9.3.3.1.1.7 Derivation process of ctxldxInc for the syntax elementsmvd |0 and mvd_I1....................... 183
9.3.3.1.1.8 Derivation process of ctxldxInc for the syntax element intra_chroma_pred mode................ 184
9.3.3.1.1.9 Derivation process of ctxldxInc for the syntax element coded_block_flagc.cceceeveeennne 184
9.3.3.1.2 Assignment process of ctxldxInc using prior decoded bin ValUESccceeeeieeienenencneneeee 185
9.3.3.1.3 Assignment process of ctxldxInc for syntax elements significant_coeff_flag,
last_significant_coeff_flag, and coeff_abs level_MINUSL ... 186
9.3.3.2 Arithmetic deCOUING PrOCESS.......coveueitireeiirtirteirte ettt b et b et b e et b bbb b e e e enas 187
9.3.3.2.1 Arithmetic decoding process for abinary deCiSiONccvereirineinenee e 188
0.3.3.2.1.1 StAELraNSItiON PrOCESS.....ccuerveueriirteiriesieeeteste sttt sbe sttt st b s bttt sb et s b ettt b e ees 188
9.3.3.2.2 Renormalization process in the arithmetic decoding engine............ccoeeererirrenenene s 191
9.3.3.2.3 Bypassdecoding process for binary deCiSiONS...........ccoeiereririiiene e 191
9.3.3.24 Decoding process for binary decisions beforeterminationc.ccocvevereineiennnc e 192
9.34 Arithmetic encoding Process (INfFOrMELIVE)ccereeiuirirere et 193
9.34.1 Initialisation process for the arithmetic encoding engine (informative)...........ccooeverenenenenenieeienns 193
9.3.4.2 Encoding process for abinary decision (infOrmative)coceoeereiineienieneeeeeee e 193
9.3.4.3 Renormalization processin the arithmetic encoding engine (informative).........c.ccccveveennenncneene, 194
9.3.44 Bypass encoding process for binary decisions (infOrmative) ..o 195
9.3.4.5 Encoding process for abinary decision before termination (informative)ccceccevvvievvveeieeieecennens 196
9.3.4.6 Byte stuffing process (INfOrMELIVE)ccoireiririiirire e 197
ANNEX A ProfileS and [EVEIS..........coocii 198
Al Requirements on video decoder Capabilitycoeiiiirrieieiirese e 198
N = 0 1 =SS 198
A.21 BaSEINE PIOfIE .. i b et b et b e e et r e ene 198
A2.2 MABINPIOFITE et b e bbbt b e b st bt bt b e b e b b e b b e ene 198
A.2.3 EXIENOE PrOFIIE.....o ittt b bbb e bt bbbt b b e b b ene 199
N - = S 199
A31 Profilesindependent [EVEl TIMITS........ccciiiiiiiic e seene 199
A.3.2 Profile-SpeCifiC IOVEl IIMITS......oooiiee bbb e 201
A.3.21 Basaline Profil@ lIMITS ..ot bbbt 202
A.3.22 Main Profil@ lIMITS........oiiee ettt b bt a et e b bbb bt eae e e e e s 202
A.3.2.3 Extended Profil@ LIMItSccoiiiiiieiieie ettt bbb b b s ae e 203
A.3.3 Effect of level limits on frame rate (iNfOrmMatiVe)cceeieeiicie i 204
ANNEX B BYLE SIFEAM FOIMALooiiiee ettt e te s e st e e st e e steeeesaeesaeesaeeteenseensenneesanesenes 205
B.1 Byte stream NAL unit SyntaX and SEMANLICS.........cccecieiiiiieiie e st e se et e e e ste et eetesseesraesreesreenreenesnneenes 206
B.1.1 Byte Stream NAL UNIT SYNEAX......ociiiieiee sttt re e sae e e e e sreesreeteenteeneesnaesraesnnas 206
B.1.2 Byte stream NAL UNIt SEMENLICS........ccieiee ettt e st ste s ae e e s reesbe e beenreeneeenaesraesneas 206
B.2 Byte stream NAL unit deCOOING PrOCESS.......ooiiiiiiiirierieiieriesie ettt sie et se e e sttt saesbe e e e sesaesbesbesaesbe s e eneennans 206
B.3 Decoder byte-alignment recovery (iNfOrMative)ccviieieiie sttt 207
Annex C Hypothetical refer ENCE AECOUEYcoiiiiiiiiiie et bbb b e s bbb sae e e e 207
C.1 Operation of coded picture DUFFEr (CPB).......cc.oiiiiriiieierieie et 210
Cl1 Timing Of DItSIFEAM @ITIVALcveeicece et s e s ae e s e e ae e reenreens 210
C.12 Timing of coded PICUIE rEIMOVEooiiiiiieieiee ettt e b e bbb nee e 211
C.2 Operation of the decoded picture DUFFEr (DPB).........coiiiiieiiiiese e 211
c21 Decoding of gapsin frame_num and storage of "non-existing” frames...........coceeoveeienenene s 211
C22 Picture deCcOding @NG QULPUL..........ceiiuiieeriereete ettt sttt sttt bbbkttt bt b et st 212
C.23 Removal of picturesfrom the DPB before possible insertion of the current picturecccooeveeevenienene 212
C.24 Current decoded picture Marking and SLOFAOEccveerieiririiinere et 212
C.24.1 Marking and storage of areference decoded picture into the DPBccccoooveieverevence e 212
C.24.2 Storage of anon-reference picture into the DPBcocciiriiinincere s 213
C.3 BitSIrEaM CONOIMBNCEcueeueeuieeite ettt he bt e e et e bt bt eb e et e ae e s e besbesheebeeaeeseene et e sbesbesbesneeneeneennas 213
C.4 DECOUES CONOMTIANCE. ... e terieeueereeete sttt et et ee st e st te bt ebe st e e e se e besbesheeb e e st eae e s e besbeeheebeeaeess e e et e sbesbesbesneeneeneeneas 214
C.41 Operation of the OULPUL OFdEr DPBcooiiiiiiiiierese et s b e bbb ee e 215
C4.2 Decoding of gapsin frame_num and storage of "Non-existing” PICIUrES...........ccooereeeeererenesesenieeeenens 215
Cc43 L Lot (1= Y0 (= o |1 o S 215
C.44 Removal of picturesfrom the DPB before possible insertion of the current pictureccoceeeeeeeienenee. 215
C.45 Current decoded picture marking and SLOFBOEcouverieiririiieeree e 216
C.45.1 Storage and marking of areference decoded picture into the DPB..........ccccceoveeevereneniene s eeeseeeeneens 216
C.4.5.2 Storage and marking of a non-reference decoded picture intothe DPB..........ccooevevvvievevenceeceeenns 216

vi DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

C.45.3 "BUMPING" PIrOCESS.....ceeueitireeterterteiesteseesestessesessessesessessesessessesessessesessessesessessessasessessssessessssessensssessenssses 216
Annex D Supplemental enhancement iNfOorMationooeiiriiiine e 217
D 20 S = 0= Y o= o Y g = v TSRS 218
D.1.1 Buffering period SEI MESSA0E SYMEBXccveeririeeriirieisierieesie st st se e sae s s e sbe st sbe e e seenesnas 219
D.1.2 Picturetiming SEl MESSA0E SYNEAXccirueuirtirieiriirieirierieeste sttt st e sa e b et sbe e sbe b e e seeneenes 219
D.1.3 Pan-scan rectangle SEI MESSA0E SYNLAX.......ccureeriririrririeisieseeiestesee i see s e sse e sbe e se s see e seseenesnes 220
D.1.4 Filler payload SEl MESSAgE SYNEAXc.coirieuiriirieiriirieiriesieesie sttt b e st b et e e enas 220
D.15 User dataregistered by ITU-T Recommendation T.35 SEI MeSSage SyNtaXccoeeerereeererienererienennes 221
D.1.6 User dataunregistered SEl MESSAgE SYNEAX.....ccuciuieiueeiieiiierieesieesieeiteseeseesreeste e teetesssessaesreesreesseseesnnesnes 221
D.1.7 Recovery point SEI MESSAOE SYNEAXccuerverueruerueriereeiestestesieseesseseeaeseessesaesaesaesaeesssssessessessessesseessensenes 221
D.1.8 Decoded reference picture marking repetition SEI meSSage SYNtaXccccoevevereeieneenese e 221
D.1.9 Spare PiCture SEI MESSAOE SYMEBXceeeueruirterteruertereetessessessessesseseesessessessesaessesseesssssessessessessessesssensenses 222
D.1.10 Sceneinformation SEI MESSAGE SYNEAXcceeiuieiieeiieiieiieeseesiee e e stesaeseesreesseeteesesseessaesseessesssesssesnsesnes 222
D.1.11 Sub-sequence information SEI MESSAgE SYNEBX.........ccuriririririeiririeisie et enes 223
D.1.12 Sub-sequence layer characteristics SEI MESSAJE SYNEBX.......curveeririeiririeererieesie s 223
D.1.13 Sub-sequence characteristics SEl MeSSAgE SYNIAX........cureeririeiririeeriesieese e 223
D.1.14 Full-frame freeze SEI MESSAJE SYNLBXceririeeriirieirterieiesteseeeste et e b be e sbe e se b b e s e seeneenes 224
D.1.15 Full-frame freeze release SEI MESSA0E SYNLAX.......cveeririeiririeiriereeesie et enas 224
D.1.16 Full-frame snapshot SEI MESSAJE SYMEBX........crueerririeirerieesieseeeste st seeesse e b e sbesee e s see e seseenesnes 224
D.1.17 Progressive refinement segment start SEI MeSsage SYNEaX........coceevereeieeseeseese e 224
D.1.18 Progressive refinement segment end SEI MeSSage SYNaXccecveeieiieeieeseesieesie e eie e s 224
D.1.19 Motion-constrained slice group Set SEI MESSAgE SYNEAXccvevverierieiierierierie e 224
D.1.20 ReSerVed SEI MESSAYE SYNLBX...c..eciiiiieeieeieeseesteesteeteetessaesteesteessesssesssssessseesseessessessssssesssesssesssesssssnsesnes 225
D.2 SEI PAYIOBA SEMANTICScoeeeeiitiite sttt sttt sttt se et et ee b e sbesaeeae e e e eesbe et e ebesaeeae e e e beseeebesbesaesbeeaeensennans 225
D.21 Buffering period SEI MESSage SEMANTICS........oiiiuiririeieriesie sttt s se e se e sbesbe e se e e 225
D.2.2 Picturetiming SEl MESSA0E SEMBNTICS.......c.coiririririeiririeiste sttt b e s b e see e enas 225
D.2.3 Pan-scan rectangle SEI MeSSA08 SEMEBNTICSceivirieiririeisierieesie st 229
D.2.4 Filler payload SEl MeSSage SEMANTICS.......c.ciiriiriirieirierieesie et 230
D.25 User dataregistered by ITU-T Recommendation T.35 SEI message SemantiCs........cccovveerererenerienennes 230
D.2.6 User dataunregistered SEI MESSAgE SEMANLICS.......coueeririeiririeirie sttt 230
D.2.7 Recovery point SEl MeSSage SEMANTICS.......cccuriiririeirieriere et 230
D.2.8 Decoded reference picture marking repetition SEI message Semantics.........cooeverieeieeneneneneseneeeeeenn 232
D.2.9 Spare picture SEI MESSAgE SEMANTICSoouirtirierierteeeeie sttt sttt e e se et st sbesbe st e e e e besbesbesbe s e enseneeneas 232
D.2.10 Sceneinformation SEI MeSSage SEMANLICS......ccvciiieiieiiiie et e ettt ee e s sre e reenesnneenes 234
D.211 Sub-sequence information SEI Message SEMEaNTICSoouiiiiiirerieie et 235
D.2.12 Sub-sequence layer characteristics SEl MeSSage SEMENTICS........eierieiierierere e 237
D.2.13 Sub-sequence characteristics SEl message SEMEANTiCSccuvivriririeinirere e 238
D.2.14 Full-frame freeze SEI MESSAJE SEMEANLICS.......ooueertirieirerieisie ettt b s b e enas 239
D.2.15 Full-frame freeze release SEI MESSAgE SEMEBNTICS........coireiririeiririere e 239
D.2.16 Full-frame snapshot SEI MESSAJE SEMEANLICSc.civirieiririeiririeesie st 239
D.2.17 Progressive refinement segment start SEI Message SEMaNTICS........ovveevirieinerieinesese e 239
D.2.18 Progressive refinement segment end SEI MeSsage SEMENTICS......covvveiririeirerieinenieese s 240
D.2.19 Motion-constrained slice group set SEI Message SEMaNtiCS.......co.eeeeeerierere s 240
D.2.20 Reserved SEl MESSA0E SEMANTICSccveiceiieeieeste ettt ete s ee st et e e e saesee s e e s reesbe e teeatesaeesraesreesreesreensesnnesnns 241
ANnnex E Video usability iNfOrMation.........o.oiiiiies ettt 241
LNt Y 1V | = PSP 242
E1l1 VUL PArAMELETS SYNLBXveoveeeiieeiee et ettt sre e s se s sre e sre s n e e sseesreesreesn e e e e sanesanenneenneenneans 242
E.12 HRD PAraMELEIS SYNLBXcecveerieierieesiee sttt s e s sr e n e se e e e sreesr e e reenneennennnesreennees 243
.2 VUL SEIMAINTICS. ...e ettt sttt h et b e Rt b e Rt R e R et R s Rt e Rt e R et e b e e R et bt b et e b e et n e r e 243
E.21 VU PAramEters SEMBIMLICSc.eiuerueruereeiertestesie st eteseetestestesbesbesbe st e eese e besbesbessesaeeseeseebeseesbesbeeneenseneeneas 243
E.2.2 HRD Parameters SEMANTICS.ueiueiueriereeie ettt sttt e et se ettt sbesbe st e e e seesbesbesbeebe s e esseseesbesbesaesbesaeensennans 252
LIST OF FIGURES
Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 lumaand chroma samplesin aframe.........c.ccocccvenenene 14
Figure 6-2 — Nominal vertical and horizontal sampling locations of samples top and bottom fields.cccoceveirinienenn 15
Figure 6-3 — A picture with 11 by 9 macroblocks that is partitioned into twWo SlICES..........ccccrvreerireereeeseee e 15
Figure 6-4 — Partitioning of the decoded frame into MacroblOCK PaAITS..........coerereeiiiriee e 16

DRAFT ITU-T Rec. H.264 (2002 E) vii

DRAFT ISO/IEC 14496-10 : 2002 (E)

Figure 6-5 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock partition

S 07 T PRSP 17
Figure 6-6 — Scan for 4AX4 TUMADIOCKS.ciriiiiiierie bbbttt s b et 18
Figure 6-7 — Neighbouring macroblocks for a given macroblOCKccooi i 19
Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames..........cccovvenineineseeseseeseseee 19
Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (informative)ccccoeveerenienne 20
Figure 7-1 — The structure of an access unit not containing any NAL units with nal_unit_type equal to O, 7, 8, or in the

raNQE Of 12 10 3L, INCIUSIVE.....cueieeceeeeee ettt e et ee st e se e e e ese e testesaeeseeneeneeneaseseessensennnensenenns 51
Figure 8-1 — Intra_4x4 prediction mode directions (iNfOrMBELIVE)ccoeiiiirerieierere e 98
Figure 8-2 —Example for temporal direct-mode motion vector inference (informative)coceeererenenenenieneeeees 116
Figure 8-3 — Directional segmentation prediction (INfOrMBELIVE) ..o 117
Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks

with lower-case letters) for quarter sample [uMaiNterPOlatioN.cvvereeerireine e 122
Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer position

LSS0 1S3 AN = T O a0 I I TS 124
Figure 8-6 — Assignment of the indices of dCY to IUMBAXABIKIUX.cceeiieiiiiecie e 128
Figure 8-7 — Assignment of the indices of dcC to ChromadXABIKIAX.cccevvriiiie i 129
Figure 8-8 — &) Zig-zag SCan. D) FIEIO SCAN........cciiiiirireee bbbt 130
Figure 8-9 — Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma boundaries

ShOWN With daSHEA TTNES) ... bbb bbb bbbt b e b e 140
Figure 8-10 — Convention for describing samples across a 4x4 block horizontal or vertical boundaryc.cccceeeeneee 143
Figure 9-1 — Illlustration of CABAC parsing process for a syntax element SE (informative)ccooveveneneneenenene 161
Figure 9-2 — Overview of the arithmetic decoding process for asingle bin (informative) ... 187
Figure 9-3 — Flowchart for deCoding @ AECISIONc.eiiriiuiiirieirereest ettt b e se s 189
Figure 9-4 — Flowchart of renormMaliZalioNc.ceoei ittt et e e ee s e s raeste e s ne e teeneeneeenes 191
Figure 9-5 — Flowchart of Dypass deCOTING PIrOCESS.......c.eiueriereririeite sttt sttt st sae bt se e be b sbesbesaeene e e e e es 192
Figure 9-6 — Flowchart of decoding a decision before termination ..o 193
Figure 9-7 — Flowchart for encoding @ GECISIONc.ciiriiiiiirieiriree ettt sb b se e nns 194
Figure 9-8 — Flowchart of renormalization inthe ENCOTEYcui i e 195
Figure 9-9 — FIOWChart Of PULBIT(B).........ciieeiieiiiieciee ettt ettt te et s e s e st e st e e be et eenteesaessaesteesaeeteeneesnnesnns 195
Figure 9-10 — Flowchart of enNCOTING DYPESS.......ccuriiririririirieire sttt sttt sb b sa e 196
Figure 9-11 — Flowchart of encoding a decision before termination ... s 197
Figure 9-12 — Flowchart of flushing at termination............coireiiirinine e 197
Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance Checks..........cccoeveeveeieccie e, 208
Figure C-2 — HRD DUFfEr MOTELooiee ettt s s e et e et e et e eateereesraesteesreeteenneennesnns 209

Figure E-1 — Location of chroma samples for top and bottom fields as a function of chroma_sample loc_type top field
and chroma_sample_[0C_type Bottom_fIeldo e 249

LIST OF TABLES

Table 6-1 — ChromaFOrMEtFACIOr VBIUESccviuiiieeieieries e se s ste st sees e steste s se s e e e e saestessesseeseeneensessessessesseeseeneenseses 13
Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.110 6.4.7.5........ccoevereienenenieneeseeeen 20
Table 6-3 — Specification of MBAGAIN ...t bbbt b e bbbt eae e e s 24

viii DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 6-4 - Specification of MBAAAIN @NA YIMoiuiiii et b bbb seene 25
Table 7-1 — NAL UNIT EYPE COUBS.euerueeueeieeite sttt ettt sttt h ettt e e bt b e s aeehe e e e teseesbesbesheehe e e e eeseesbesbesaeene e e ennees 47
Table 7-2 — Meaning Of PriMary _PIiC TYBcoi ittt ettt e et et s besbesaeebe e e e b e seeebesbesaeeae e e ennees 57
Table 7-3 — Name aSSOCi atiON 10 SlICE YR ..ottt et sttt b e st b et b st e seeb e b seebesbeneenen 59
Table 7-4 —reordering_of _pic_nums _idc operations for reordering of reference picture lists........cccoovveverivvvsceneeseennene, 64
Table 7-5 — Interpretation of adaptive ref _pic_marking_mode flag ... 66
Table 7-6 — Memory management control operation (memory_management_control_operation) values.............cccceu.... 66
Table 7-7 — Allowed collective macroblock types fOr SliCE TYPE......ov i 68
Table 7-8 — MacroblOCK tYPES FOr | SHCESc.eiiiiiiiercere ettt b et se b sbeneeben 69
Table 7-9 — Macroblock type with Value O fOr ST SlICEScuiiiiiiieeee e 70
Table 7-10 — Macroblock type values 0 t0 4 for P and SP SliCES........coiiiiiiiieecee e e 71
Table 7-11 — Macroblock type values 0 t0 22 FOr B SlICES.........oiiiiriiieee et 72
Table 7-12 — Specification of CodedBlockPatterNChromMa ValUES.............covveiiirieiniireere e 73
Table 7-13 — Relationship between intra_chroma_pred_mode and spatial prediction Modes...........coeevevenineienenenens 74
Table 7-14 — Sub-macroblock typesin P macrObIOCKS...........coi i 75
Table 7-15 — Sub-macroblock typesin B MacrobIOCKSoiiiiiiiiee e e 76
Table 8-1 — Refined SliCe groUp MBI LYPEc.eiiiieiitereeerie ettt ettt b b et sb et b st e e b et e neebesbeneenen 83
Table 8-2 — Specification of Intradx4PredMode] lumadx4Blkldx] and associated NAMES...........covereeerereenierieeseneeeens 98
Table 8-3 — Specification of Intral6x16PredMode and assoCiated NAMEScoeieeieriirere et 103
Table 8-4 — Specification of Intra chroma prediction modes and associated NAMES...........coeverereeierere e 105
Table 8-5 — Specification of the variale COIPIC..........coi i e 111
Table 8-6 — Specification Of PICCOUINGSIIUCI(X) ..ovveiriiriiiieiierieie sttt et 111
Table 8-7 — Specification of mbAddrCol, yM, and VEItIMVSCAIE.........c..ooiiiiiiiiereceeee e 112
Table 8-8 — Assignment of prediction UtiliZation Flags..........ccoe e 114
Table 8-9 — Derivation of the vertical component of the chromavector in field coding mode.........cccoovevninennenieenn 119
Table 8-10 — Differential full-sample TUMATOCALIONS.........cccoiiiiiiieee bbb 122
Table 8-11 — Assignment of the luma prediction sample predPartL X [XL, YL] «oeeceereremeneneneneeiereese e 123
Table 8-12 — Specification of mapping of idx to ¢; for zig-zag and field SCan..........cccccceviiiiiiccccs 130
Table 8-13 — Specification of QPc @S afUNCLioN OF Ooviiiiiiirieer e e 131
Table 8-14 — Derivation of indexA and indexB from offset dependent threshold variablesa and b ... 146
Table 8-15 — Value of filter clipping variable tcg asafunction of indexA and bS...........ccooviiiiiiinen e, 147
Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative)...................... 149
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)..........ccovevererienene 149
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v).............. 150
Table 9-4 — Assignment of codeNum to values of coded block_pattern for macroblock prediction modes.................... 150
Table 9-5 — coeff_token mapping to Total Coeff(coeff_token) and TrailingOnes(coeff_token).......ccoevvvvnenneniencnn 154
Table 9-6 — Codeword table fOr [OVEl_PrefiX ... bbb 157
Table 9-7 —total_zeros tables for 4x4 blocks with Total Coeff(coeff token) 110 7....cccvcvvvievieveeve e, 158
Table 9-8 —total_zeros tables for 4x4 blocks with Total Coeff(coeff token) 810 15.......cccvveeveeveeveeie e, 158
Table 9-9 —total_zeros tables for chromaDC 2X2 BIOCKS..........coiiiiiiir e 159

DRAFT ITU-T Rec. H.264 (2002 E) ix

DRAFT ISO/IEC 14496-10 : 2002 (E)

Tabhle 9-10 — TahlES FOr FUN_DEFOIE....c.ecuiieecee e bbb bbb e 159
Table 9-11 — Association of ctxldx and syntax elements for each dlice typein theinitialisation process.........c.cccceeeenee. 162
Table 9-12 — Vaues of variables m and n for ctXIdX from 010 10........ccooeierireieninereee e 163
Table 9-13 — Vaues of variables m and n for ctXIdX from 1110 23........ccoeveiiiiririirene e e 163
Table 9-14 — Vaues of variables m and n for ctXIdX from 2410 39........coceiiiiiiriinee e 163
Table 9-15 — Vaues of variables m and n for ctxIdx from 40 10 53.........c.coiiieiiiieieeeee e 164
Table 9-16 — Values of variables m and n for ctXIdX from 5410 59..........coeiiiiiinein e 164
Table 9-17 — Vaues of variables m and n for ctxIdX from 60 t0 69...........cceiririinerinirere e 164
Table 9-18 — Vaues of variables m and n for ctxIdX from 7010 104.........coeeiriririenenine e 165
Table 9-19 — Values of variables m and n for ctxldx from 10510 165.........ccuveriiieieninereresee e 166
Table 9-20 — Values of variables m and n for ctXldX from 166 10 226...........cocererirerinineiereseese s 167
Table 9-21 — Vaues of variables m and n for CtXIdX from 22710 275.......cccoiieiiiieieeeeeeeese e 168
Table 9-22 — Vaues of variables m and n for ctXIdX from 277 10 337 ..o e 169
Table 9-23 — Vaues of variables m and n for ctXldx from 33810 398.......ccccoiiiiiiieiee e 170
Table 9-24 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffset...........ccoceceeennen. 172
Table 9-25 — Bin string of the unary binarization (INfOrMaLIVE)coeeiiiii e 173
Table 9-26 — Binarization for macroblock typeSin | SlICES ..o e 175
Table 9-27 — Binarization for macroblock typesin P, SP, and B SlICES.......ccccviviiiieierere e 176
Table 9-28 — Binarization for sub-macroblock typesin P, SP, and B SHICES........ccooieiiriiiii e 177
Table 9-29 — Assignment of ctxldxInc to binldx for all ctxldxOffset values except those related to the syntax elements

coded block_flag, significant_coeff flag, last_significant_coeff flag, and coeff_abs level minusil..................... 179
Table9-30 — Assignment of ctxldxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,

significant_coeff flag, last_significant_coeff flag, and coeff _abs level minusl............cccocovveiieciccecce e, 180
Table 9-31 — Specification of ctxldxInc for specific values of ctxldxOffset and bBiNAX........ccceevvererninennineree 186
Table 9-32 — Specification of ctxBlockCat for the different BIOCKS ... 186
Table 9-33 — Specification of rangeTabL PS depending on pStatel dx and qCodIRangeldXccccvevererenenenieneeneenn, 190
Table 9-34 — State tranSitiON TADIEc.cci i e e bbb bbb e 191
TADIE A-L — LEVEL TIMITS....eiiitiitiicieiteee ettt b et b e bbbt b e bbbt e b et et e b s b et besbe e e b et es 201
Table A-2 —Baseline Profile [eVE] TIMITS........c.oii e bbb b bt ae e 202
Table A-3—Main Profil@ EVE] TIMITSooii et bbbttt e et bbb eae e e e 203
Table A-4 — Extended profile [eVEl TIMITS........cooiiiii et bbb 203
Table A-5 — Maximum frame rates (frames per second) for some example frame SiZesS........cocoovvvevninennenennene 204
Table D-1 — INterpretation Of PIC_SITUCTc.oiiiiieeeeeee ettt bttt e bbb e bt et se e e e besbesbesbesaeenee e eneas 226
Table D-2 — Mapping Of Ct_type tO SOUICE PICLUIE SCANooueiuiiteriereeiie ettt sttt et b b sbe st se e e besbesbesbesaeesee e ennas 227
Table D-3 — Definition of COUNLING_TYPE VBIUEScoeiiiiiieiie ittt sttt sb e bt se b bbb ene e e e 227
Table D-4 — stene tranSitioN_tYPE VAIUES.cooiiiiiieieeie ettt sttt bbbt b e bbbt b e b 234
Table E-1 — Meaning of sample aspect ratio iINAICALONccooerrirerreneeee e 244
Table E-2 — Meaning Of VIAEO FOMMIEL...........ccouiiiiiieceese ettt e esr e st e s re e teenesnnesaeesreenseenteans 245
TaDIE E-3 — COIOUN PITMAITES ...ttt sttt ettt st b e bt ae et e bt sheeh e s aeea e e e e besbeebeebe e Rt es e e s ebesbesbesbesaeensenseneas 246
Tahle E-4 — Transfer CharaCtEIStCSccueiveecieitereet sttt st et bbb bbbt b b e 247
Tabhle E-5 — MariX COBFTICIBNTScuiitiieiisteee bbb bbbttt b e bbbt b e 248

X DRAFT ITU-T Rec. H.264 (2002 E)

Table E-6 — Divisor for computation of Dt gon(N)

DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E) Xi

DRAFT ISO/IEC 14496-10 : 2002 (E)

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardisation Sector (ITU-T) is a permanent organ of ITU. ITU-T
isresponsible for studying technical, operating and tariff questions and issuing Recommendations on them with aview to
standardising telecommunications on a world-wide basis. The World Telecommunication Standardisation Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with 1SO and IEC.

ISO (the International Organisation for Standardisation) and |EC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of 1SO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. 1SO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with 1SO and |EC, aso take part in the
work. In the field of information technology, 1SO and IEC have established a joint technical committee, |SO/IEC JTCL.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTCL/SC29/WG11, aso known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

Xii DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

0 | ntroduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new Recommendation | International Standard.

0.2 Purpose
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted
and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digitd terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Seria storage media (digital VTR, etc.)

04 Profilesand levels
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and rea-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles’ and "levels'. These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

DRAFT ITU-T Rec. H.264 (2002 E) Xiii

DRAFT ISO/IEC 14496-10 : 2002 (E)

In order to deal with this problem, "levels' are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g. picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.5 Overview of the design characteristics
This subclause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. The algorithm is not lossless, as the exact source sample values are typically not preserved through the encoding
and decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding
algorithms (not specified in this Recommendation | International Standard) may select between inter and intra coding for
block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit
temporal statistical dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit
spatial statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may
be specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a
transform to remove spatial correlation inside the transform block before it is quantised, producing an irreversible
process that typically discards less important visual information while forming a close approximation to the source
samples. Finally, the motion vectors or intra prediction modes are combined with the quantised transform coefficient
information and encoded using either variable length codes or arithmetic coding.

05.1 Predictive coding
This subclause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may aso be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.5.2 Coding of progressive and interlaced video
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in either
progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of an
interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture time.
Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are typically
coded as aframe. For interlaced video, the encoder can choose between frame coding and field coding. Frame coding or
field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within a coded
frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion. Field
coding typically works better when thereis fast picture-to-picture motion.

0.5.3 Picture partitioning into macroblocks and smaller partitions
This subclause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macraoblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
guantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samplesin size, using

Xiv DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter prediction of
a sample block can aso involve the selection of the picture to be used as the reference picture from a number of stored
previously-decoded pictures. Mation vectors are encoded differentially with respect to predicted values formed from
nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.54 Spatial redundancy reduction
This subclause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatid redundancy. This
Recommendation | International Standard is based on the use of a block-based transform method for spatial redundancy
removal. After inter prediction from previously-decoded samples in other pictures or spatial-based prediction from
previously-decoded samples within the current picture, the resulting prediction residual is split into 4x4 blocks. These
are converted into the transform domain where they are quantised. After quantisation many of the transform coefficients
are zero or have low amplitude and can thus be represented with a small amount of encoded data. The processes of
transformation and quantisation in the encoder are not specified in this Recommendation | International Standard.

0.6 How to read this specification
This subclause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E aso form anintegral part of this Recommendation | International Standard.

Annex A defines three profiles (Baseline, Main, and Extended), each being tailored to certain application domains, and
defines the so-called levels of the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery
of coded video as an ordered stream of bytes. Annex C specifies the hypothetical reference decoder and its use to check
bitstream and decoder conformance. Annex D specifies syntax and semantics for supplemental enhancement information
message payloads. Finally, Annex E specifies syntax and semantics of the video usability information parameters of the
sequence parameter set.

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

DRAFT ITU-T Rec. H.264 (2002 E) XV

DRAFT ISO/IEC 14496-10 : 2002 (E)

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard 1SO/IEC 14496-10 video
coding.

2 Nor mative r efer ences

The following Recommendations and International Standards contain provisions that, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and SO maintain registers of currently
valid International Standards. The Telecommunication Standardisation Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

— ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-
standard facilities

— ISO/MEC 11578:1996, Annex A, Universal Unique Identifier
— ISO/CIE 10527:1991, Colorimetric Observers

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

31 access unit: A set of NAL units always containing a primary coded picture. In addition to the primary coded
picture, an access unit may also contain one or more redundant coded pictures or other NAL units not
containing slices or dice data partitions of a coded picture. The decoding of an access unit always resultsin a

decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions
iS non-zero.

33 adaptive binary arithmetic decoding process: An entropy decoding process that recovers the values of bins

from a bitstream produced by an adaptive binary arithmetic encoding process.

34 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this
Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be
decoded using the adaptive binary arithmetic decoding process.

35 arbitrary slice order: A decoding order of dicesin which the macroblock address of the first macroblock of
some slice of a picture may be smaller than the macroblock address of the first macroblock of some other
preceding dlice of the same coded picture.

3.6 B dice: A dlice that may be decoded using intra prediction from decoded samples within the same dlice or
inter prediction from previously-decoded reference pictures, using at most two motion vectors and reference
indicesto predict the sample values of each block.

37 bin: One bit of abin string.

38 binarization: The set of intermediate binary representations of all possible values of a syntax element.
39 binarization process: A unique mapping process of possible values of a syntax element onto a set of bin
strings.

3.10 bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements.
311 bi-predictive slice: See B dlice.

3.12 bitstream: A segquence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a
byte stream.

3.13 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.14 bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of atop field.

DRAFT ITU-T Rec. H.264 (2002 E) 1

3.15

3.16

3.17

3.18

3.19

3.20

321

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

331

3.32

3.33
3.34

3.35

3.36

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For aframe macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it isindicated that some subsequent pictures in decoding order
may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit
on theright. When represented in a sequence of data bits, the most significant bit of abyteisfirst.

byte-aligned: A bit in abitstreamis byte-aligned when its position is an integer multiple of 8 bits from the first
bit in the bitstream.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the
application to refer to classes of syntax elements in a manner not specified in this
Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE - The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of afield.
coded frame: A coded representation of aframe.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or aredundant coded picture, but
not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed zero or more non-IDR access units including all subsequent access units up to but not including any
subsequent IDR access unit.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame.

complementary field pair: A collective term for a complementary reference field pair or a complementary
non-reference field pair.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order astwo coded fields of opposite parity where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order astwo coded fields and share the same value of frame number, where the second field in decoding order
is not an IDR picture and does not include a memory_management_control_operation syntax element equal to
5.

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the frequency index is zero in al dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.

DRAFT ITU-T Rec. H.264 (2002 E)

3.37
3.38

3.39

3.40

341

3.42

3.43

344

345

3.46

3.47

3.48
3.49

3.50

3.51
3.52

3.53

3.54

3.55

3.56

3.57

3.58
3.59

3.60

DRAFT ISO/IEC 14496-10 : 2002 (E)

decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and produces decoded pictures.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and
to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit
contains a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of aternate rows of a frame. A frame is composed of two fields, atop field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macraoblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of luma samples and two corresponding arrays of chroma samples. A frame
consists of two fields, atop field and a bottom field.

frame macroblock: A macroblock representing samples from two fields of a coded frame. When macroblock-
adaptive frameffield decoding is not in use, all macroblocks of a coded frame are frame macroblocks. When
macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame may be frame
macroblocks.

frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to
an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of
abitstream or a decoder.

| dice: A dicethat is decoded using prediction only from decoded samples within the same dlice.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture containing only sliceswith | or S slice types
that causes the decoding process to mark all reference pictures as "unused for reference" immediately after
decoding the IDR picture. After the decoding of an IDR picture al following coded picturesin decoding order
can be decoded without inter prediction from any picture decoded prior to the IDR picture. Thefirst picture of
each coded video sequenceis an IDR picture.

inter coding: Coding of ablock, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

intra coding: Coding of a block, macroblock, slice, or picture that usesintra prediction.

DRAFT I TU-T Rec. H.264 (2002 E) 3

3.61
3.62
3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

371

3.72

3.73

3.74

3.75

3.76

3.77
3.78

3.79

intra prediction: A prediction derived from the decoded samples of the same decoded dlice.
intradlice: Seel dice.

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levelsis defined for all profiles, with most aspects
of the definition of each level being in common across different profiles. Individual implementations may,
within specified constraints, support a different level for each supported profile. In a different context, level is
the value of atransform coefficient prior to scaling.

list O (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list O (list 1).

list O (list 1) prediction: Inter prediction of the content of a dlice using a reference index pointing into
reference picturelist O (list 1).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signa
related to the primary colours. The symbol used for lumaisY.

NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term luminance.

macr oblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples. The division
of aglice or amacroblock pair into macroblocks is a partitioning.

macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macr oblock address. When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macraoblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of
the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock pair
raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is the
macroblock address of the corresponding top macroblock plus 1. The macroblock address of the top
macroblock of each macroblock pair is an even number and the macroblock address of the bottom macroblock
of each macroblock pair is an odd number.

macr oblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (%, y). For
the top left macroblock of the picture (x,y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macrobl ock-adaptive frame/field decoding is not in use, y isincremented by 1
for each macroblock row from top to bottom. When macroblock-adaptive framef/field decoding isin use, y is
incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1
when a macroblock is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macr oblock-adaptive frame/field decoding processing. The division of a slice into macroblock pairs is a
partitioning.

macr oblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction.

macroblock to dlice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates
in the decoded picture to the coordinates in areference picture.

NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
datain the form of an RBSP interspersed as necessary with emulation prevention bytes.

DRAFT ITU-T Rec. H.264 (2002 E)

3.80
381
3.82

3.83
3.84
3.85
3.86

3.87

3.88

3.89

3.90

391
3.92

3.93
3.94

3.95
3.96

3.97
3.98

3.99

3.100
3.101
3.102

3.103

3.104

3.105

DRAFT ISO/IEC 14496-10 : 2002 (E)

NAL unit stream: A sequence of NAL units.
non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

non-paired non-reference field: A decoded non-reference field that is not part of a complementary non-
reference field pair.

non-paired reference field: A decoded reference field that is not part of a complementary reference field pair.
non-reference field: A field coded with nal_ref idc equal to 0.
non-reference frame: A frame coded with nal_ref idc equal to 0.

non-reference picture: A picture coded with nal_ref_idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

opposite parity: The opposite parity of top is bottom, and vice versa.
output order: The order in which the decoded pictures are output from the decoded picture buffer.

P dice: A dlicethat may be decoded using intra prediction from decoded samples within the same slice or inter
prediction from previously-decoded reference pictures, using at most one motion vector and reference index to
predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as
part of the defined term quantisation parameter.

parity: The parity of afield can be top or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for afield or aframe.

picture order count: A variable having a value that is non-decreasing with increasing picture position in
output order relative to the previous IDR picture in decoding order or relative to the previous picture
containing the memory management control operation that marks all reference pictures as “unused for
reference’.

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

predictive slice: See P dlice.

predictor: A combination of previously decoded sample values or data elements used in the decoding process
of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all
macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary
coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc. rows of the pattern (going down) each scanned
from left toright.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop hit and followed by zero or more subsequent bits equal to O.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be

DRAFT I TU-T Rec. H.264 (2002 E) 5

3.106

3.107

3.108

3.109

3.110
3111

3.112

3.113

3.114

3.115

3.116

3.117
3.118

3.119

3.120

3121

3.122

3.123

identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero hit in the
RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of
the decoded pictures represented by the bitstream is achieved after arandom access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all
macroblocks in the primary coded picture. Redundant coded pictures have no normative effect on the
decoding process. See aso primary coded picture.

referencefield: A reference field may be used for inter prediction when P, SP, and B dlices of a coded field or
field macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame may be used for inter prediction when P, SP, and B dlices of a coded
frame are decoded. See also reference picture.

reference index: Anindex into areference picturellist.

reference picture: A picture with nal_ref_idc not equal to 0. A reference picture contains samples that may
be used for inter prediction in the decoding process of subsequent picturesin decoding order.

reference picturelist: A list of short-term picture numbers and long-term picture numbers that are assigned to
reference pictures.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP dice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list O is one of two
reference picture lists used for inter prediction for a B dlice, with the other being reference picture list 1.

reference picturelist 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two lists of reference picture lists used for inter prediction for a B dice, with the other being
reference picturelist 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element,
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be wused in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of
transform coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a
number of macroblocks.

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample
aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

scaling: The process of multiplying transform coefficient levels by afactor, resulting in transform coefficients.

Sl dice: A dlice that is coded using prediction only from decoded samples within the same dlice and using
quantisation of the prediction samples. An Sl dlice can be coded such that its decoded samples can be
constructed identically to an SP dlice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within a
particular slice group. For the primary coded picture, the division of each slice group into dlices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan
within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan
within the picture. The addresses of the macroblocks are derived from the address of the first macroblock in a
slice (as represented in the slice header) and the macroblock to slice group map.

DRAFT ITU-T Rec. H.264 (2002 E)

3.124

3.125

3.126
3.127

3.128

3.129

3.130

3131

3.132

3.133

3.134
3.135
3.136
3.137
3.138

3.139

3.140

3.141

3.142

3.143

3.144

3.145

DRAFT ISO/IEC 14496-10 : 2002 (E)

slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

slice group map units: The units of the map unit to slice group map.

dlice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the dice.

source: Term used to describe the video material or some of its attributes before encoding.

SP dlice: A dicethat is coded using inter prediction from previously-decoded reference pictures, using at most
one motion vector and reference index to predict the sample values of each block. An SP slice can be coded
such that its decoded samples can be constructed identically to another SP slice or an S dlice.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning
of anew NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within
NAL units by the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit
is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two 4x4 chroma
blocks of which one corner is located at a corner of the macroblock.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction.

switching | dlice: See Sl dlice.

switching P dlice: See SP dlice.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more syntax el ements present together in the bitstream in a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macraoblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field of the frame that lie within the spatial region of the macroblock
pair. For aframe macroblock pair, the top macroblock represents the samples of the frame that lie within the
top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular two-
dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard
and will not have a specified meaning in the future as an integral part of this Recommendation | International
Standard.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

zZig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

DRAFT ITU-T Rec. H.264 (2002 E) 7

4
4.1
4.2
43
44
45
46
47
48
4.9
4.10
411
4.12
413
4.14
4.15
4.16
4.17
418
4.19
4.20
4.21
4.22
4.23

5

51

Abbreviations

CABAC: Context-based Adaptive Binary Arithmetic Coding
CAVLC: Context-based Adaptive Variable Length Coding
CBR: Constant Bit Rate

CPB: Coded Picture Buffer

DPB: Decoded Picture Buffer

DUT: Decoder under test

FIFO: First-In, First-Out

HRD: Hypothetical Reference Decoder

HSS: Hypothetical Stream Scheduler

IDR: Instantaneous Decoding Refresh

L SB: Least Significant Bit

M B: Macroblock

MBAFF: Macroblock-Adaptive Frame-Field Coding
M SB: Most Significant Bit

NAL: Network Abstraction Layer

RBSP: Raw Byte Sequence Payload

SEI: Supplemental Enhancement Information
SODB: String Of Data Bits

UUID: Universal Unique Identifier

VBR: Variable Bit Rate

VCL: Video Coding Layer

VLC: Variable Length Coding

VUI: Video Usability Information

Conventions

NOTE - The mathematical operators used in this Specification are similar to those used in the C programming language. However,
integer division and arithmetic shift operations are specificaly defined. Numbering and counting conventions generally begin
from O.

Arithmetic operators

The following arithmetic operators are defined as follows.

< | x

Addition
Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
Multiplication

Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.

Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated to 1
and —7/4 and 7/-4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Jd ...
a f (i) Thesummation of f(i) withi taking all integer values from x up to and including y.

i=x

X%y

Modulus. Remainder of x divided by vy, defined only for integers x and y with x >=0andy > 0.

When order of precedenceis not indicated explicitly by use of parenthesis, the following rules apply

multiplication and division operations are considered to take place before addition and subtraction
multiplication and division operations in sequence are evaluated sequentially from left to right
addition and subtraction operations in sequence are evaluated sequentially from left to right

52 L ogical operators

The following logical operators are defined as follows
X && y Booleanlogica "and" of x andy

x|y
!

X?y:.z

Boolean logica "or" of x andy
Boolean logical "not"
If x is TRUE or not equal to O, evaluates to the value of y; otherwise, evaluates to the value of z

5.3 Relational operators

The following relational operators are defined as follows

Greater than

Greater than or equal to
Lessthan

Lessthan or equal to
Equal to

Not equal to

54 Bit-wise operators

The following bit-wise operators are defined as follows

&

X>>y

X <<y

Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to O.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of
the integer value. When operating on a binary argument that contains fewer bits than another argument,
the shorter argument is extended by adding more significant bits equal to 0.

Arithmetic right shift of a two’'s complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the
right shift shall have avalue equal to the MSB of x prior to the shift operation.

Arithmetic left shift of atwo’s complement integer representation of x by y binary digits. This function
is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift
have avalue equal to O.

55 Assignment operators

The following arithmetic operators are defined as follows

++

Assignment operator.

Increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

Decrement, i.e., x—— is equivalent to x = x — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

Increment by amount specified, i.e, x += 3 is equivalent tox = x + 3, and x += (-3) is equivalent
tox =x+(-3).

DRAFT I TU-T Rec. H.264 (2002 E) 9

—= Decrement by amount specified, i.e.,, x —= 3 is equivalent tox = X — 3, and x —= (-3) is equivalent
tox=x—(-3).
5.6 Range notation
The following notation is used to specify a range of values

X =Y. z Xtakesoninteger values starting fromy to z inclusive, with x, y, and z being integer numbers.

57 M athematical functions

The following mathematical functions are defined as follows

i
i (5-1)
%- X ; X<0O
Ceil(x) thesmallest integer greater than or equal to x. (5-2
Clipl(x) =Clip3(0, 255, x) (5-3)
iX ; z<X
Clip3(x,y.z)=ty ; z>y (5-4)
1z ; otherwise
Floor(x) the greatest integer less than or equal to Xx. (5-5)
i (a%(d/b))*b;, e==
InverseRasterScan(a, b, c,d,e) = | (5-6)
1 (@al(d/b))*c;, e==
Log2(x) returns the base-2 logarithm of x. (5-7)
Log10(x) returns the base-10 logarithm of x. (5-8)
Lumadx4BlkScan(x,y) =(x/2)*4+(y/2)* 8+ RasterScan(x %2,y % 2, 2) (5-9)
Median(x,y, z) =x+y+z—Min(x,Min(y, z))—Max(x, Max(y, z)) (5-10)
Min(x,y)= %+ XY (5-11)
1y o X2y
Max(x,y)= % * %77 (5-12)
1y 5 X<y
RasterScan(X, Yy, ny) =X +y * n, (5-13)
Round(x) = Sign(x) * Floor(Abs(x) +0.5) (5-14)
sgn(x)= 1 & x>=0 (5-15)
i-1 ,; x<0
Sart(x) = v'x (5-16)

5.8 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of

10 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a
lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE - The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions are described by their names, which are constructed as syntax element names, with left and right round
parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more
than one variable).

Square parentheses are used for indexing in lists or arrays. Lists or arrays can either be syntax elements or variables.
Two-dimensional arrays are sometimes also specified using matrix notation using subscripts for indexing.

NOTE — The index order for two-dimensional arrays using square parentheses and subscripts is interchanged. A sample at
horizontal position x and vertical position y in a two-dimensional sample array denoted as 9 X, y] would, in matrix notation, be
referred to as sy

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, ‘01000001
represents an eight-bit string having only its second and its last bits equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to O represents a FALSE condition in atest statement. The value TRUE is represented by any other value
different than zero.

5.9 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement O

elseif (condition1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:

... asfollows/ ... the following applies.
If condition O, statement O
Otherwise, if condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

Each "If...Otherwise, if...Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies’ immediately followed by "If ... ". The last condition of the "If...Otherwise, if...Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If...Otherwise, if...Otherwise, ..." statements can be identified by matching "... as follows"
or "... the following applies’ with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition Oa && condition Ob)
statement O

DRAFT ITU-T Rec. H.264 (2002 E) 11

elseif (condition 1a || condition 1b)
statement 1
else
Statement n
may be described in the following manner:

... asfollows/ ... the following applies.
If al of the following conditions are true, statement O
— condition Oa

— condition Ob

Otherwise, if any of the following conditions are true, statement 1
— condition 1a
— condition 1b

— Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement O

if (condition1)
statement 1

may be described in the following manner:
When condition 0O, statement 0
When condition 1, statement 1

510 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or alower case variable.

The assignment of variablesis specified as follows.

- If invoking a process, variables are explicitly assigned to lower case input or output variables of the process
specification in case these do not have the same name.

- Otherwise (when the variables at the invoking and specification have the same name), assignment is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Sour ce, coded, decoded and output data formats, scanning processes, and neighbouring
relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as
the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This
seguence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL
unitsin the NAL unit stream.

12 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes.
The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique
start code prefix pattern within this stream of bytes. Methods of framing the NAL unitsin a manner other than use of the
byte stream format are outside the scope of this Recommendation | International Standard. The byte stream format is
specified in Annex B.

6.2 Sour ce, decoded, and output picture formats
This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of three sample arrays, one luma and two chroma
sample arrays.

The variable ChromaFormatFactor is specified in Table 6-1, depending on the chroma format sampling structure. The
value of ChromaFormatFactor shall be inferred equal to 1.5, indicating 4:2:0 sampling. In monochrome sampling there is
only one sample array, which may nominally be considered a luma array. In 4:2:0 sampling, each of the two chroma
arrays has half the height and half the width of the lumaarray. In 4:2:2 sampling, each of the two chroma arrays has the
same height and half the width of the luma array. In 4:4:4 sampling, each of the two chroma arrays has the same height
and width as the luma array.

NOTE — Other values may be valid for future versions of this Recommendation | International Standard.

Table 6-1 — ChromaFor matFactor values

Chroma
Format ChromaFormatFactor
monochrome 1
4:2:0 15
4:2:2 2
4:4.4 3

This Recommendation | International Standard represents colour sequences using 4:2:0 chroma sampling. The width of
the luma sample array of each picture is an integer multiple of 16. The width of the chroma sample arrays of each
picture are an integer multiple of 8. The height of the luma sample array of each coded picture (whether it is a coded
frame or a coded field) is an integer multiple of 16 and the height of each chroma array for these pictures is an integer
multiple of 8. If any coded frames are present within a coded video sequence that contains coded fields or contains
coded frames that use macroblock-adaptive frame-field coding, the height of the luma sample array of all coded frames
in the coded video sequence is an integer multiple of 32 and the height of each chroma sample array for these framesis
an integer multiple of 16. The width or height of pictures output from the decoding process need not be an integer
multiple of 16 and can be specified using a cropping rectangle.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is
half that of frames coded referring to the same sequence parameter set (see below).

The nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6-1.
Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

DRAFT ITU-T Rec. H.264 (2002 E) 13

X X X X X X

O O o mEan
X X X X X X

X X X X X X

) (o] (o)

X X X X X X

X X X X X X

) (o] (@]

X X X X X X

Guide:

X = Location of luma sample
Q =Location of chroma sample

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samplesin aframe

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as aframe or field region, by use of macroblock-adaptive frame-field coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or
are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth,
etc. rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded
frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows
(for atop field) or the odd rows (for a bottom field) of the decoded frame are used.

The nominal vertical and horizontal relative locations of luma and chroma samplesin top and bottom fields are shown in
Figure 6-2. The nominal vertical sampling relative locations of the chroma samplesin atop field are specified as shifted
up by one-quarter luma sample height relative to the field-sampling grid. The vertical sampling locations of the chroma
samples in a bottom field are specified as shifted down by one-quarter luma sample height relative to the field-sampling
grid. Alternative chroma sample relative locations may be indicated in the video usability information (see Annex E).

NOTE — The shifting of the chroma samples is in order for these samples to align vertically to the usua location relative to the
full-frame sampling grid as shown in Figure 6-1.

14 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

O X
O X
O X

Q O O
X X X X X X
X X X X X X
O O O
X X X X X X
Top field " Bottom field "
Guide: Guide:
X = Location of luma sample X = Location of luma sample
O = Location of chroma sample O = Location of chroma sample

Figure 6-2 — Nominal vertical and horizontal sampling locations of samplestop and bottom fields.

6.3 Spatial subdivision of picturesand slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A dlice
is a sequence of macroblocks, or, when macroblock-adaptive framef/field decoding is in use, a sequence of macroblock
pairs.

Each macroblock is comprised of one 16x16 luma and two 8x8 chroma sample arrays. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-3.

Figure 6-3— A picturewith 11 by 9 macroblocksthat is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-4. Each macroblock pair consists of two macroblocks.

DRAFT ITU-T Rec. H.264 (2002 E) 15

~

A macroblock pair

Figure 6-4 — Partitioning of the decoded frameinto macroblock pairs.

6.4 I nver se scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes, i.e., the mapping of indices to locations, and derivation processes
for neighbours.

6.4.1 Inverse macroblock scanning process
Input to this process is a macroblock address mbAddr.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock with address mbAddr
relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows.

- If MbaffFrameFlag is equal to O,

X = InverseRasterScan(mbAddr, 16, 16, PicWidthinSamples,, 0) (6-1)
y = InverseRasterScan(mbAddr, 16, 16, PicWidthinSamples,, 1) (6-2)

- Otherwise (MbaffFrameFlag is equa to 1), the following applies.

XO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthinSamples;, 0) (6-3)
yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthinSamples., 1) (6-4)
Depending on the current macroblock the following applies.
- If the current macroblock is a frame macroblock
x=x0 (6-5)
y =yO + (mbAddr % 2) * 16 (6-6)
- Otherwise (the current macroblock is afield macroblock),
X =x0 (6-7)
y =yO+ (mbAddr % 2) (6-8)

6.4.2 Inverse macroblock partition and sub-macraoblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-5. The outer rectangles refer to the samples in a macroblock or sub-macrablock, respectively. The rectangles

16 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Table 7-10, Table 7-11, Table 7-14, and
Table 7-15. MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the
macroblock type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of

amacroblocks with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

0 0 1
Macroblock 0 0 :
partitions
1 2 3
1 sub-macroblock partition 2 sub-macroblock partitions 2 sub-macroblock partitions |4 sub-macroblock partitions
of 8*8 luma samples and of 8*4 luma samples and of 4*8 luma samples and of 4*4 luma samples and
associated chroma samples associated chroma samples |associated chroma samples |associated chroma samples
Sub-macroblock 0 0 1
partitions 0 0 1

Figure 6-5—Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macr oblock
partition scans.

6.4.2.1 Inverse macroblock partition scanning process
Input to this process is the index of a macroblock partition mbPartl dx.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

X = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 0) (6-9)

y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1) (6-10)

6.4.2.2 Inversesub-macrablock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition
subMbPartl dx.

Output of this process is the location (x,y) of the upper-left luma sample for the sub-macroblock partition
subMbPartldx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows.
- If mb_typeisequal to P_8x8, P_8x8ref0, or B_8x8,

X = InverseRaster Scan(subMbPartldx, SubMbPartWidth(sub_mb_type][mbPartldx]),

SubMbPartHeight(sub_mb_type[mbPartidx]), 8,0) (6-11)
y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_typel mbPartidx]),
SubMbPartHeight(sub_mb_type[mbPartidx]), 8, 1) (6-12)
- Otherwise,
DRAFT ITU-T Rec. H.264 (2002 E) 17

X = InverseRasterScan(subMbPartldx, 4, 4, 8, 0) (6-13)
y = InverseRasterScan(subMbPartldx, 4, 4, 8, 1) (6-14)

6.4.3 Inverse4x4luma block scanning process
Input to this processis the index of a4x4 luma block lumadx4BIlkldx.

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index
lumadx4Blkldx relative to the upper-left luma sample of the macroblock.

Figure 6-6 shows the scan for the 4x4 luma blocks.

Figure 6-6 — Scan for 4x4 luma blocks.

Theinverse 4x4 lumablock scanning process is specified by

X = InverseRasterScan(lumadx4BIkldx / 4, 8, 8, 16, 0) + InverseRasterScan(lumadx4Blklidx % 4, 4, 4, 8,0) (6-15)
Y = InverseRasterScan(lumadx4Blkldx / 4, 8, 8, 16, 1) + InverseRasterScan(lumadx4Blkldx % 4, 4, 4,8, 1) (6-16)

6.4.4 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this processis the availability of the macroblock mbAddr.
NOTE — The meaning of availability is determined when this process is invoked.

The macraoblock is marked as available, unless one of the following conditions is true in which case the macroblock shall
be marked as not available:

- mbAddr<0
- mbAddr > CurrMbAddr

- themacroblock with address mbAddr belongs to a different dlice than the current slice

6.4.5 Derivation processfor neighbouring macroblock addresses and their availability

This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are

- mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.

- mbAddrB: the address and availability status of the macroblock above the current macroblock.

- mbAddrC: the address and availability status of the macroblock above-right of the current macrobl ock.
- mbAddrD: the address and availability status of the macroblock above-l€ft of the current macroblock.

Figure 6-7 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

18 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-7 — Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.4.4 is mbAddrA = CurrMbAddr —1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthinMbs is equal
to 0.

Input to the process in subclause 6.4.4 is mbAddrB = CurrMbAddr — PicWidthinMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC = CurrMbAddr — PicwidthinMbs + 1 and the output is whether the
macroblock mbAddrC is avallable. In addition, mbAddrC is maked as not available when
(CurrMbAddr + 1) % PicWidthinMbsis equal to O.

Input to the process in subclause 6.4.4 is mbAddrD = CurrMbAddr — PicWidthinMbs - 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is maked as not avalable when
CurrMbAddr % PicWidthinMbsis equal to O.

6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.
The outputs of this process are

- mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair.

- mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair.

- mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair.

- mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the current
macroblock pair.

Figure 6-8 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardiess whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

mbAddrD mbAddrB mbAddrC

CurrMbAddr

Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames

DRAFT ITU-T Rec. H.264 (2002 E) 19

Input to the process in subclause 6.4.4 is mbAddrA =2* (CurrMbAddr/2—-1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when
(CurrMbAddr / 2)) % PicWidthinMbs is equal to O.

Input to the process in subclause 6.4.4 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthinMbs) and the output is whether
the macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthinMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthinMbsis equal to O.

Input to the process in subclause 6.4.4 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthinMbs- 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthinMbsis equal to O.

6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions
Subclause 6.4.7.1 specifies the derivation process for neighbouring macroblocks.
Subclause 6.4.7.2 specifies the derivation process for neighbouring 8x8 luma blocks.
Subclause 6.4.7.3 specifies the derivation process for neighbouring 4x4 luma blocks.
Subclause 6.4.7.4 specifies the derivation process for neighbouring 4x4 chroma blocks.
Subclause 6.4.7.5 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma3x8BIkldxN, lumadx4BlkldxN, and chromadx4BlkldxN for the output.
These input and output assignments are used in subclauses 6.4.7.1 t0 6.4.7.5. The variable predPartWidth is specified
when Table 6-2 isreferred to.

Table 6-2 — Specification of input and output assignmentsfor subclauses 6.4.7.1t0 6.4.7.5

N xD yD
A -1 0

B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-9 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block isin frame coding mode.

' % &

$ &XUWHOW
0 DRIREGAN

REDUMRQ
REGBAN

Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (infor mative)

6.4.7.1 Derivation processfor neighbouring macroblocks
Outputs of this process are

- mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and

20 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- mbAddrB: the address of the macroblock above the current macroblock and its availability status.
mbAddrN (with N being A or B) is derived as follows.
- Thedifference of lumalocation (XD, yD) is set according to Table 6-2.

- Thederivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.7.2 Derivation processfor neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma3x8BIkldx.

The luma8x8BIlkldx specifies the 8x8 lumablocks of a macroblock in araster scan.
Outputs of this process are

- mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

- luma8x8BIkldxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8Blkldx and its
availability status,

- mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

- luma8x8BIkldxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8Blkldx and its
availability status.

mbAddrN and luma3x8BIkldxN (with N being A or B) are derived as follows.
- Thedifference of lumalocation (XD, yD) is set according to Table 6-2.
- Thelumalocation (XN, yN) is specified by
XN = (luma8x8Blkldx % 2) * 8 + xD (6-17)
yN = (luma8x8Blkldx /2) * 8 + yD (6-18)
- Thederivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(XN, yN) asthe input and the output is assigned to mbAddrN and (xXW, yW).
- Thevariable luma8x8BIkldxN is derived as follows.
- If mbAddrN isnot available, luma8x8BIkldxN is marked as not available.

- Otherwise (mbAddrN is available), the 8x8 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) shall be assigned to luma8x8BIkIdxN.

6.4.7.3 Derivation processfor neighbouring 4x4 luma blocks
Input to this process is a 4x4 luma block index lumadx4BIkldx.
Outputs of this process are

- mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

- lumadx4BIkldxA: the index of the 4x4 luma block to the left of the 4x4 block with index lumadx4Blkldx and its
availability status,

- mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

- lumadx4BIkidxB: the index of the 4x4 luma block above the 4x4 block with index lumad4x4Blkldx and its
availability status.

mbAddrN and lumadx4BlklidxN (with N being A or B) are derived as follows.
- Thedifference of lumalocation (XD, yD) is set according to Table 6-2.

- Theinverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with lumadx4BIkldx as the
input and (X, y) asthe output.

DRAFT ITU-T Rec. H.264 (2002 E) 21

- Thelumalocation (XN, yN) is specified by
XN =x+xD (6-19)
yN=y+yD (6-20)
- Thederivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(XN, yN) asthe input and the output is assigned to mbAddrN and (xXW, yW).
- Thevariable lumadx4BIkldxN is derived as follows.
- If mbAddrN is not available, lumadx4BIkldxN is marked as not available.

- Otherwise (mbAddrN is available), the 4x4 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) shall be assigned to lumadx4BIkIdxN.

6.4.7.4 Derivation processfor neighbouring 4x4 chroma blocks
Input to thisis a current 4x4 chroma block chromadx4BIkldx.
Outputs of this process are

- mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

- chroma4x4BlkldxA: the index of the 4x4 chroma block to the left of the chroma 4x4 block with index
chromadx4BIkldx and its availability status,

- mbAddrB: either equa to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

- chroma4x4BlkldxB: the index of the 4x4 chroma block above the chroma 4x4 block index chromadx4Blkldx and its
availability status.

The derivation process for neighbouring 8x8 luma block is invoked with luma8x8Blkldx = chromadx4Blkldx as the
input and with mbAddrA, chromadx4BlkldxA = luma3x8BlkldxA, mbAddrB, and chromadx4BlkldxB =
lumaBx8BlkldxB as the output.

6.4.7.5 Derivation processfor neighbouring partitions
Inputs to this process are

- amacraoblock partition index mbPartldx

- asub-macroblock partition index subM bPartldx
Outputs of this process are

- mbAddrA\mbPartldxA\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macrobl ock partition
CurrMbAddr\mbPartl dx\subM bPartldx and its availability status,

- mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

- mbAddrC\mbPartldxC\subMbPartl dxC: specifying the macroblock or sub-macroblock partition to the right-above of
the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartl dx\subM bPartldx and its availahility status,

- mbAddrD\mbPartldxD\subM bPartldxD: specifying the macroblock or sub-macraoblock partition to the left-above of
the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartl dx\subM bPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldx (with N being A, B, C, or D) are derived as follows.

- Theinverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartldx as
theinput and (X, y) as the output.

- Thelocation of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

- If mb_typeis equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 isinvoked with subMbPartldx as the input and (xS, yS) as the output.

22 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Otherwise, (xS, yS) aresetto (0,0).

- Thevariable predPartWidth in Table 6-2 is specified as follows.

If mb_typeis equal to P_Skip or B_Skip, or mb_type is equal to B_8x8 and sub_mb_type[mbPartldx] is equal
to B_Direct_8x8, predPartWidth = 16.

NOTE — When sub_mb_typel mbPartldx] is equal to B_Direct_8x8, the predicted motion vector is the predicted
motion vector for the complete macroblock independent of the value of mbPartldx.

Otherwise, if mb_type is equal to P_8x8, P_8x8ref0, or B_8x8 (and sub_mb_type] mbPartldx] is not equa to
B_Direct_8x8), predPartWidth = SubMbPartWidth(sub_mb_type[mbPartidx]).

Otherwise, predPartWidth = MbPartWidth(mb_type).

- Thedifference of lumalocation (XD, yD) is set according to Table 6-2.

- Theneighbouring lumalocation (XN, yN) is specified by

XN =X +xS+xD (6-21)

yN=y+yS+yD (6-22)

- The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) asthe input and the output is assigned to mbAddrN and (xXW, yW).

- Depending on mbAddrN, the following applies.

6.4.8

If mbAddrN is not available, the macroblock or sub-macroblock partition
mbA ddrN\mbPartl dxN\subM bPartldxN is marked as not available.

Otherwise (mbAddrN is available), the following applies.

- The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW') shall be
assigned to mbPartldxN and the sub-macroblock partition inside the macroblock partition mbPartldxN
covering the sample (XW, yW) in the macroblock mbAddrN shall be assigned to subMbPartldxN.

- When the partition given by mbPartldxN and subMbPartldxN is not yet decoded, the macroblock partition
mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not available.

NOTE - The latter condition is, for example, the case when mbPartldx = 2, subMbPartldx = 3, xD = 4, yD =-1, i.e,, when
neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

Derivation process for neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock

Outputs of this process are

- mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

- (XW,yW): the location (XN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxWH be a variable specifying a maximum value of the location components xN, yN xW, and yW. maxWH is
derived asfollows.

- If thisprocessisinvoked for neighbouring lumalocations,

maxWH = 16 (6-23)

- Otherwise (this process is invoked for neighbouring chromalocations),

maxWH =8 (6-24)

Depending on the variable MbaffFrameFlag, the neighbouring luma locations are derived as follows.

- If MbaffFrameFlag is equa to 0, the specification for neighbouring luma locations in fields and non-M BAFF frames
as described in subclause 6.4.8.1 is applied.

- Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring luma locations in MBAFF frames as
described in subclause 6.4.8.2 is applied.

DRAFT ITU-T Rec. H.264 (2002 E) 23

6.4.8.1 Specification for neighbouring luma locationsin fields and non-M BAFF frames
The specificationsin this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.5 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well astheir availability status as the output.

Table 6-3 specifies mbAddrN depending on (XN, yN).

Table 6-3 — Specification of mbAddrN

xN yN mbAddrN
<0 <0 mbAddrD
<0 0. maxWH-1 | mbAddrA
O.maxWH-1 | <0 mbAddrB

O.maxWH-1 | 0..maxWH -1 | CurrMbAddr
>maxWH - 1 <0 mbAddrC
> maxWH -1 0..maxWH -1 | not available

> maxWH -1 not available

The neighbouring luma location (XW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

XW = (XN + maxWH) % maxWH (6-25)
yW = (yN + maxWH) % maxWH (6-26)

6.4.8.2 Specification for neighbouring luma locationsin MBAFF frames
The specificationsin this subclause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.6 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well astheir availability status as the output.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:
1. Specification of a macroblock address mbAddrX depending on (xN, yN) and the following variables:
- Thevariable currMbFrameFlag is derived as follows.
- If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1,

- Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal
to 0.

- Thevariable mblsTopMbFlag is derived as follows.

- If the macroblock with address CurrMbAddr is a top macroblock (CurrMbAddr % 2 is equa to 0),
mblsTopMbFlag is set equal to 1;

- Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, CurrMbAddr % 2 is equal
to 1), mbisTopMbFlag is set equal to 0.

2. Depending on the availability of mbAddrX, the following applies.
- If mbAddrX isnot available, mbAddrN is marked as not available.

- Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN and yM
depending on (xN, yN), currMbFrameFlag, mblsTopMbFlag, and the variable mbAddrXFrameFlag, which is
derived asfollows.

- If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1,
- Otherwise (the macroblock mbAddrX is afield macroblock), mbAddrXFrameFlag is set equal to 0.

24 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

Table 6-4 - Specification of mbAddrN and yM

Q c
8o 5 =
=]
ST = <
3 & 8
Izl x IX T =
S| S S S 5 S
S G o © = o
> = |5lg] & |2 g 5 =
< = 3| € S € ® S =
1 |mbAddrD mbAddrD +1 |yN
1 1 mbAddrA yN
mbAddrA 15 MbAddrA + 1 |(yN + maxWH) > 1
<0 <0 1 mbAddrD +1 [2*yN
o [F |mPAdD g mbAddrD N
0 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
1 |mbAddrA 0 yN%2== mbAddrA yN>>1
yN%2!=0 mbAddrA +1 |yN>>1
1 1 mbAddrA +1 |yN
0 |mbAddrA yN%2==0 mbAddrA (yN + maxWH) >>1
0. 0 [yN%21=0 mbAddrA + 1 |(yN + maxWH) >> 1
<0 maxWH - 1 yN < (maxWH/2) |mbAddrA yN <<1
1 1 |mbAddrA yN >= (maxWH/2) |mbAddrA +1 |(yN <<1) - maxWH
0 mbAddrA yN
0 yN < (maxWH/2) |mbAddrA (yN<<1)+1
1 _ mbAddrA +1 [(yN<<1)+1-
0 |mbAddrA yN >= (maxWH/2) maxWH
0 mbAddrA +1 |yN
1 |mbAddrB mbAddrB+1 |yN
0 1 o |currmbAddr CurrMbAddr - 1 [yN
maxWH - |<0 1 mbAddrB+1 |2* yN
1 0 1 |mbAdare 0 mbAddrB yN
0 |mbAddrB mbAddrB+1 |yN
0. 0.. CurrMbAddr [yN
maxWH - [maxWH - CurrMbAddr
1 1
1 |mbAddrC mbAddrC+1 [yN
1 10 [not available not available na
> maxWH 1 mbAddrC+1 |2* yN
<0
1 0 1 |mbAddrC 0 DAJGIC N
0 |mbAddrC mbAddrC+1 [yN
0. not available na
_>1rnaxWH maxWH - not available
1
_>1maxWH not available not available na

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

XW = (XN + maxWH) % maxWH

(6-27)

DRAFT ITU-T Rec. H.264 (2002 E)

25

yW = (yM + maxWH) % maxWH (6-28)

7 Syntax and semantics

7.1 Method of describing syntax in tabular form

The syntax tables describe a superset of the syntax of all allowed input bitstreams. Additional constraints on the syntax
may be specified in other clauses.

NOTE - An actual decoder should implement means for identifying entry points into the bitstream and to identify and handle non-
conforming bitstreams. The methods for identifying and handling errors and other such situations are not described here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies
that a data element is read (extracted) from the bitstream and the bitstream pointer.

26 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

C | Descriptor

/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 | ugv)

conditioning statement

/* A group of statements enclosed in curly bracketsis a compound statement and
istreated functionally as a single statement. */

{

statement
statement

/* A “while” structure specifies atest of whether a condition istrue, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */
while(condition)

statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
atest of whether a condition istrue, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

Statement
while(condition)

/* An“if ... elseg” structure specifies atest of whether a condition istrue, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The“else” part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */
if(condition)

primary statement
else

alternative statement

/* A “for” structure specifies evaluation of an initia statement, followed by atest
of acondition, and if the condition istrue, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows.

- If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte aligned() is equal to TRUE.

- Otherwise, the return value of byte aligned() isequal to FALSE.

DRAFT ITU-T Rec. H.264 (2002 E) 27

more_data in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows.

- If moredatafollow in the byte stream, the return value of more_data in_byte stream() is equal to TRUE.
- Otherwise, the return value of more_data in_byte stream() is equal to FALSE.
more_rbsp_data() is specified as follows.

- If there is more data in an RBSP before rbsp_trailing_bits(), the return value of more rbsp_data() is equal to
TRUE.

- Otherwise, the return value of more_rbsp data() is equal to FALSE.

The method for enabling determination of whether there is more datain the RBSP is specified by the application (or
in Annex B for applications that use the byte stream format).

more_rbsp trailing_data() is specified as follows.
- If thereis more datain an RBSP, the return value of more _rbsp trailing_data() is equal to TRUE.
- Otherwise, the return value of more_rbsp_trailing_data() is equal to FALSE.

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as
specified in Annex B, next_bits(n) returns avalue of O if fewer than n bits remain within the byte stream.

read bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When nis
equal to 0, read_hits(n) is specified to return avaue equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three dlice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains al syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category valuesis not
specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value
provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with category
marked as "All" is considered to apply to the syntax elements with category "All".

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors,
separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy_coding_mode flag is equal
to 0 and the right descriptor applies when entropy_coding_mode flag isequal to 1.

- ag(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

- b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read bits(8).

- ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

- f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for
this descriptor is specified by the return value of the function read_bits(n).

- i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a two's complement integer representation with most
significant bit written first.

- me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

- sg(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

- te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

28 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with most
significant bit written first.

- ueg(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

7.3 Syntax in tabular form
7.3.1 NAL unit syntax

nal_unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero_bit All | f(2)
nal_ref_idc All | u(?
nal_unit_type All | ud5)

NumBytesInRBSP =0
for(i =1; i < NumBytesInNALunit; i++) {
if(i +2 < NumBytesInNALunit && next_hits(24) == 0x000003) {

rbsp_byte] NumBytesinRBSP++] All | b(8)

rbsp_byte]l NumBytesinRBSP++ | All | b(8)

i+=2

emulation_prevention_three byte /* equal to 0x03 */ All | f(8)
} dse

rbsp_byte]l NumBytesinRBSP++ | All | b(8)

DRAFT ITU-T Rec. H.264 (2002 E) 29

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.21 Sequence parameter set RBSP syntax

seq_parameter_set rbsp() { C | Descriptor

profile idc 0 | u®
constraint_setO flag 0 | u?d
constraint_setl flag 0 |u®
constraint_set2 flag 0 | u?d
reserved_zero 5bits/* equal to 0 */ 0 |u®)
level idc 0 | u®
seq_parameter_set_id 0 | ue(v)
log2_max_frame_num_minus4 0 | uev)
pic_order_cnt_type 0 | ue(v)
if(pic_order_cnt_type == 0)

log2_max_pic_order_cnt_Isb_minus4 0 | ue(v)
elseif(pic_order_cnt type == 1){

delta_pic_order_always zero flag 0 |u®

offset_for_non_ref_pic 0 | sgVv)

offset for_top_to bottom field 0 | se(v)

num_ref_frames in_pic_order_cnt_cycle 0 | uev)

for(i=0;i<num_ref_frames in_pic_order_cnt_cycle; i++)

offset_for_ref frameli] 0 | sgVv)

}
num_ref_frames 0 | uev)
gaps_in_frame_num_value allowed_flag 0 | u®
pic_width_in_mbs minusl 0 | uev)
pic_height_in_map_units minusl 0 | uev)
frame_mbs only flag 0 |u®®
if('frame_mbs_only_flag)

mb_adaptive frame field_flag 0 |u®®
direct_8x8 inference flag 0 |u®
frame_cropping_flag 0 |u®®
if(frame_cropping_flag) {

frame_crop_left_offset 0 | ue(v)

frame_crop_right_offset 0 | uev)

frame_crop_top_offset 0 | ue(v)

frame _crop_bottom_offset 0 | ue(v)
}
vui_parameters present_flag 0 |u®
if(vui_parameters present flag)

vui_parameters() 0
rbsp_trailing_bits() 0

30 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.3.2.2 Picture parameter set RBSP syntax

pic_parameter_set rbsp() { C | Descriptor
pic_parameter_set_id 1| ue(v)
seq_parameter_set_id 1 | ugv)
entropy_coding_mode flag 1| u®d
pic_order_present flag 1 | u®@
num_slice_groups _minusl 1| ue(v)
if(num_slice groups minusl > 0) {
slice_group_map_type 1| ue(v)
if(dice_group map _type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length_minusl| iGroup] 1 | ugv)
elseif(slice_group_map type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minusl; iGroup++) {
top_left[iGroup] 1| ue(v)
bottom_right[iGroup] 1 | ugv)
}
elseif(dice group map type == 3 ||
slice_group_map type == 4 ||
slice group_map type == 5){
slice_group_change direction_flag 1 | u®@
dlice_group_change rate minusl 1| ue(v)
} eseif(dlice_group_map type == 6) {
pic_size in_map_units minusl 1| ue(v)
for(i=0;i<=pic_size in_map_units minusl; i++)
slice_group_id[i] 1] uv)
}
}
num_ref_idx_10_active_minusl 1 | uev)
num_ref_idx_|11 active_ minusl 1 | ugv)
weighted_pred_flag 1 |u®d
weighted_bipred_idc 1| u®
pic_init_qp_minus26 /* relativeto 26 */ 1| sgv)
pic_init_qgs minus26 /* relativeto 26 */ 1| se(v)
chroma_gp_index_offset 1| se(v)
deblocking_filter_control_present_flag 1| u(l)
constrained_intra_pred_flag 1 |u®
redundant_pic_cnt_present_flag 1| u(l)
rbsp_trailing_bits() 1

DRAFT ITU-T Rec. H.264 (2002 E)

31

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { C | Descriptor
do
sei_message() 5
while(more_rbsp_data())
rbsp_trailing_bits() 5
}

7.3.2.3.1 Supplemental enhancement infor mation message syntax

sei_message() { C | Descriptor

payloadType=0

while(next_bits(8) == OxFF) {

ff_byte /* equal to OXFF */ 5 | 1(8)

payloadType += 255

}

last_payload_type byte 5 | uB)

payloadType += last_payload_type byte

payloadSize=0

while(next_bits(8) == OxFF) {

ff_byte /* equal to OXFF */ 5 | 1(8)

payloadSize += 255

}

last_payload_size byte 5 | u®

payloadSize += last_payload size byte

sei_payload(payloadType, payloadSize) 5

7.3.24 Accessunit delimiter RBSP syntax

access_unit_delimiter_rbsp() { C | Descriptor
primary_pic_type 6 | u@®
rbsp_trailing_bits() 6

}

7.3.25 End of sequence RBSP syntax

end_of_seq_rbsp() { C | Descriptor

}

32 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.6

7327

7.3.2.8

7.3.29

End of stream RBSP syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

end_of_stream rbsp() {

Descriptor

}

Filler data RBSP syntax

filler_data_rbsp(NumBytesinRBSP) {

Descriptor

while{ next_bits(8) == OxFF)

ff_byte /* equal to OXFF */

(8)

rbsp_trailing_bits()

Slice layer without partitioning RBSP syntax

slice_layer_without_partitioning_rbsp() {

Descriptor

dlice_header()

slice data() /* all categoriesof dlice data() syntax */

2134

rbsp_slice trailing_bits()

Slice data partition RBSP syntax

7.3.2.9.1 Slice data partition A RBSP syntax

slice_data partition_a layer rbsp() {

Descriptor

dlice_header()

dlice id

ue(v)

slice_data() /* only category 2 parts of slice_data() syntax */

rbsp_dlice trailing bits()

N NN NO

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data partition_b_layer rbsp() {

Descriptor

dlice id

ue(v)

if(redundant_pic_cnt_present_flag)

redundant_pic cnt

ue(v)

slice_data() /* only category 3 parts of slice_data() syntax */

rbsp_dlice trailing_bits()

DRAFT ITU-T Rec. H.264 (2002 E)

33

7.3.2.9.3 Slicedata partition C RBSP syntax

slice_data partition_c _layer rbsp() { C | Descriptor
dice id 4 | uev)
if(redundant_pic_cnt_present flag)
redundant_pic_cnt 4 | ugVv)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
rbsp_dlice trailing_bits() 4
}
7.3.2.10 RBSP dlicetrailing bits syntax
rbsp _dlice trailing_bits() { C | Descriptor
rbsp_trailing_bits() All
if(entropy_coding_mode flag)
while(more rbsp_trailing_data())
cabac zero word /* equal to 0x0000 */ All | f(16)
}
7.3.2.11 RBSP trailing bits syntax
rbsp_trailing_bits() { C | Descriptor
rbsp_stop_one bit /* equal to 1 */ All | f(2)
while('byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | f(2)

34

DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3

DRAFT ISO/IEC 14496-10 : 2002 (E)

Slice header syntax

dlice_header() { C | Descriptor
first_mb_in_dlice 2 | uev)
dice type 2 | ueg(v)
pic_parameter_set_id 2 | uev)
frame_num 2 | uw
if(Iframe_mbs _only flag) {
field_pic flag 2 | u®@
if(field_pic flag)
bottom_field flag 2 | u®@
}
if(nal_unit_type == 5)
idr_pic _id 2 | ueg(v)
if(pic_order_cnt_type == 0){
pic_order_cnt_Isb 2 | uw)
if(pic_order_present flag && !field_pic flag)
delta_pic_order_cnt_bottom 2 | s=(v)
}
if(pic_order_cnt_type==1&& !delta_pic_order_always zero flag) {
delta_pic order_cnt[0] 2 | s=(v)
if(pic_order_present_flag && !field pic flag)
delta_pic order_cnt[1] 2 | sgv)
}
if(redundant_pic_cnt_present_flag)
redundant_pic_cnt 2 | uev)
if(slice type == B)
direct_spatial_mv_pred_flag 2 | uld)
if(dlice type==P||dice type==SP||dice type==B) {
num_ref_idx_active override flag 2 | uld)
if(num_ref_idx_active override flag) {
num_ref_idx_|0_active minusl 2 | uev)
if(dlice type == B)
num_ref_idx_|I1 active minusl 2 | uev)
}
}
ref_pic_list reordering() 2
if((weighted_pred flag && (dlice_ type==P || dlice type==SP)) ||
(weighted bipred idc == 1 && dlice type == B))
pred_weight_table() 2
if(na_ref_idc!=0)
dec_ref_pic_marking() 2
if(entropy_coding_mode flag && dlice type =1 && dlice type != Sl)
cabac init_idc 2 | ueg(v)
dice gp_delta 2 | sgv)
if(slice_type == SP || dlice_type == Sl){
if(slice type == SP)
sp_for_switch_flag 2 | u®@
dice gs delta 2 | sgv)

DRAFT ITU-T Rec. H.264 (2002 E)

35

}

if(deblocking_filter_control_present flag) {

disable_deblocking_filter_idc ue(v)
if(disable_deblocking_filter_idc '= 1){
dice alpha_c0 offset_div2 se(v)
dice beta offset_div2 se(v)
}
}
if(num_slice_groups minusl >0 &&
dice group map type>=3 && dlice group_map type <= 5)
dlice_group_change_cycle u(v)
}
7.3.3.1 Referencepicturelist reordering syntax
ref_pic_list_reordering() { Descriptor
if(dlice type '= 1 && dlice type != SI){
ref_pic list_reordering_flag_|0 u(1)
if(ref_pic_list_reordering_flag_10)
do{
reordering_of pic_nums idc ue(v)
if(reordering_of_pic_nums_idc == 0 ||
reordering_of pic nums idc == 1)
abs diff_pic_num_minusl ue(v)
elseif(reordering_of_pic_ nums idc == 2)
long_term_pic_num ue(v)
} while(reordering_of _pic_nums idc != 3)
}
if(slice_type == B){
ref_pic list_reordering_flag_|1 u(1)
if(ref_pic_list reordering_flag_I1)
do{
reordering_of pic_nums idc ue(v)
if(reordering_of_pic_nums idc == 0 ||
reordering_of pic nums idc == 1)
abs_diff_pic_num_minusl ue(v)
elseif(reordering_of pic nums idc == 2)
long_term_pic_num ue(v)

} while(reordering_of_pic_nums idc != 3)

36 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3.2

DRAFT ISO/IEC 14496-10 : 2002 (E)

Prediction weight table syntax
pred weight table() { C | Descriptor
luma _log2 weight_denom 2 | ugv)
chroma_log2 weight_denom 2 | ugv)
for(i=0;i<=num_ref_idx_I0_active minusl; i++) {
luma_weight_|0_flag 2 | u(1)
if(luma_weight_IO flag) {
luma_weight 10 i] 2 | sev)
luma_offset_10[i] 2 | sgv)
}
chroma_weight 10 _flag 2 | ud)
if(chroma weight_10 flag)
for(j =0;j <2 j++){
chroma weight 0] i][]] 2 | sev)
chroma_offset 10[i][]] 2 | se(v)
}
}
if(dice type == B)
for(i=0;i<=num_ref_idx_I1 active minusl;i++) {
luma_weight_I1 flag 2 | u®@
if(luma_weight_I1 flag) {
luma_weight 1] i] 2 | sev)
luma_offset_11] i] 2 | sgv)
}
chroma_weight |1 flag 2 | ud)
if(chroma weight 11 flag)
for(j=0;j<2;j++){
chroma weight 1] i][]] 2 | sev)
chroma_offset 11[i][]] 2 | se(v)
}
}
}

DRAFT ITU-T Rec. H.264 (2002 E) 37

7333

38

Decoded reference picture marking syntax
dec_ref pic_marking() { C | Descriptor
if(nal_unit_type == 5){
no_output_of prior_pics flag 215 | u(1)
long_term_reference flag 215 | u(1)
} else{
adaptive ref_pic_marking_maode flag 215 | u(1)
if(adaptive_ref_pic_marking_mode flag)
do{
memory_management_control_operation 215 | uev)
if(memory_management_control_operation == 1 ||
memory_management_control_operation == 3)
difference_of_pic_nums_minusl 215 | uev)
if(memory_management_control_operation == 2)
long_term_pic_num 215 | uev)
if(memory_management_control_operation == 3 ||
memory management_control _operation == 6)
long_term_frame idx 2|5 | ue(v)
if(memory_management_control_operation == 4)
max_long_term_frame_idx_plusl 2|5 | ue(v)
} while(memory_management_control_operation !'= 0)
}
}

DRAFT ITU-T Rec. H.264 (2002 E)

734

Slice data syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

dlice data() {

Descriptor

if(entropy_coding_mode flag)

while(!'byte aligned())

cabac_alignment_one _bit

f(1)

CurrMbAddr = first_mb_in_slice* (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped =0

do{

if(dice type '= 1 && dlice type !'= Sl)

if(lentropy_coding_mode flag) {

mb_skip_run

ue(v)

prevMbSkipped = (mb_skip_run>0)

for(i=0; i<mb_skip_run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

moreDataFlag = more _rbsp_data()

} else{

mb_skip_flag

ae(v)

moreDataFlag = 'mb_skip flag

}

if(moreDataFlag) {

if(MbaffFrameFlag & & (CurrMbAddr %2 == 0 ||
(CurrMbAddr %2 == 1 && prevMbSkipped)))

mb_field_decoding_flag

u(l) | ae(v)

macroblock_layer()

2(3]4

}

if(!lentropy_coding_mode flag)

moreDataFlag = more _rbsp_data()

else{

if(dice type '= |1 && dlice type !'= Sl)

prevMbSkipped = mb_skip_flag

if(MbaffFrameFlag && CurrMbAddr%2 == 0)

moreDataFlag = 1

ese{

end_of_dlice flag

moreDataFlag = 'end of dlice flag

}

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

DRAFT ITU-T Rec. H.264 (2002 E)

39

7.35

40

Macroblock layer syntax

macroblock _layer() {

Descriptor

mb_type

ue(v) | ag(v)

if(mb_type==1_PCM) {

while('byte_aligned())

pcm_alignment_zero_bit

(1)

for(i =0;i <256 * ChromaFormatFactor; i++)

pcm_byte i]

u(8)

} else{

if(MbPartPredMode(mb_type, 0) != Intra 4x4 &&
MbPartPredMode(mb_type, 0) != Intra 16x16 &&
NumMbPart(mb_type) == 4)

sub_mb_pred(mb_type)

else

mb_pred(mb_type)

if(MbPartPredMode(mb_type, 0) != Intra_16x16)

coded_block pattern

me(v) | ag(v)

if(CodedBlockPatternLuma> 0 | | CodedBlockPatternChroma> 0 | |
MbPartPredMode(mb_type, 0) == Intra_16x16) {

mb_gp_delta

s&(v) | a&(v)

residual()

34

DRAFT ITU-T Rec. H.264 (2002 E)

7351

DRAFT ISO/IEC 14496-10 : 2002 (E)

Macroblock prediction syntax

mb_pred(mb_type) {

Descriptor

if(MbPartPredMode(mb_type, 0) == Intra_4x4 ||
MbPartPredMode(mb_type, 0) == Intra_16x16) {

if(MbPartPredMode(mb_type, 0) == Intra_4x4)

for(lumadx4Blkldx=0; lumadx4Blkldx<16; lumadx4Blkldx++) {

prev_intradx4 pred_mode flag[lumadx4Blkidx]

u(l) | ae(v)

if(!prev_intradx4_pred_mode flag[lumadx4Blkldx])

rem_intradx4 pred_mode[lumadx4Blkidx]

u(3) | ae(v)

}

intra_chroma_pred_mode

ue(v) | ae(v)

} elseif(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartl dx++)

if((num_ref_idx_10_active minusl >0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) !'= Pred L1)

ref_idx_|10[mbPartidx |

te(v) | ae(v)

for(mbPartldx = O; mbPartldx < NumMbPart(mb_type); mbPartl dx++)

if((num_ref_idx_|11_active minusl > O ||
mb_field decoding_flag) &&
MbPartPredM ode(mb_type, mbPartldx) !'= Pred LO)

ref_idx_I1[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartl dx++)

if(MbPartPredMode (mb_type, mbPartldx) '= Pred L1)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx][O][compldx]

s&(v) | a&(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartl dx++)

if(MbPartPredM ode(mb_type, mbPartidx) '= Pred LO)

for(compldx = 0; compldx < 2; compldx++)

mvd_I1[mbPartldx][O][compldx]

se(v) | ae(v)

DRAFT ITU-T Rec. H.264 (2002 E)

41

7.3.5.2 Sub-macroblock prediction syntax

42

sub mb_pred(mb_type) {

Descriptor

for(mbPartldx = O; mbPartldx < 4; mbPartldx++)

sub_mb_type[mbPartldx]

ue(v) | ag(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref_idx_10_active minusl > O || mb_field_decoding_flag) &&

mb_type != P_8x8ref0 &&
sub_mb_typel mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_typel mbPartldx]) !'= Pred L1)

ref_idx_IO[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref_idx_11 active minusl > 0 || mb_field_decoding flag) &&

sub_mb_typel mbPartidx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type] mbPartldx]) !'= Pred_LO)

ref_idx_|1[mbPartidx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_typel mbPartldx]) !'= Pred L1)

for(subMbPartldx = O;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartidx]);
subMbPartl dx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_|0[mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_typel mbPartldx]) !'= Pred LO)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartl dx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_|1] mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

DRAFT ITU-T Rec. H.264 (2002 E)

7353

DRAFT ISO/IEC 14496-10 : 2002 (E)

Residual data syntax

resdual() {

Descriptor

if(lentropy_coding_mode flag)

residual_block = residual_block cavic

else

residual_block = residual_block cabac

if(MbPartPredMode(mb_type, 0) == Intra_16x16)

residual_block(Intral6x16DCLevel, 16)

for(i8x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */

for(i4x4 = 0; i14x4 < 4; i4x4++) [* each 4x4 sub-block of block */

if(CodedBlockPatternLuma & (1 <<i8x8)) {

if(MbPartPredM ode(mb_type, 0) == Intra 16x16)

residual_block(Intral6x16ACLevel[i8x8 * 4 + i4x4], 15)

else

residual_block(LumaLevel[i8x8 * 4 + i4x4], 16)

3|4

} else{

if(MbPartPredMode(mb_type, 0) == Intra_16x16)

for(i =0;1 < 15; i++)

Intral6x16ACLevel[i8x8* 4 +i4x4][i]1=0

else

for(i=0;i<16;i++)

LumaLevel[i8x8* 4+ i4x4][i]=0

}

for(iCbCr = 0; iCbCr < 2; iChCr++)

if(CodedBlockPatternChroma & 3) /* chromaDC residual present */

residual_block(ChromaDCLevel[iCbCr], 4)

3|4

else

for(i=0;1 <4 i++)

ChromaDCLevel[iCbCr][i]=0

for(iChCr = 0; iCbCr < 2; iCbCr++)

for(i4x4 = 0; i4x4 < 4; i4x4++)

if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */

residual_block(ChromaACLevel[iCbCr][i4x4 1], 15)

3|4

else

for(i=0;i<15;i++)

ChromaACLevel[iCbCr][i4x4][i1] =0

DRAFT ITU-T Rec. H.264 (2002 E)

43

7.3.5.3.1 Residual block CAVL C syntax

residual_block _cavlc(coeffLevel, maxNumCoeff) { C | Descriptor

for(i =0; i < maxNumCoeff; i++)

coeffLevel[i]1=0

coeff_token 314 | ce(v)

if(Total Coeff(coeff_token) >0){

if(Total Coeff(coeff token) > 10 && TrailingOnes(coeff _token) < 3)

suffixLength =1

else

suffixLength =0

for(i=0;i < Total Coeff(coeff token); i++)

if(i < TrailingOnes(coeff_token)) {

trailing_ones sign_flag 314 | ud)
level[i] =1-2* trailing_ones sign_flag

} else{
level _prefix 314 | ce(v)

levelCode = (level_prefix << suffixLength)

if(suffixLength > 0 || level_prefix >= 14) {

level suffix 314 | uv)

levelCode += level_suffix

}

if(level_prefix == 15 && suffixLength == 0)

levelCode += 15

if(i == TrailingOnes(coeff token) &&
TrailingOnes(coeff token) < 3)

levelCode += 2

if(levelCode% 2 == 0)

level[i]=(levelCode+2)>>1

else

level[i] =(-evelCode—-1)>>1

if(suffixLength == 0)

suffixLength = 1

if(Abs(level[i]) > (3 << (suffixLength—1)) &&
suffixLength < 6)

suffixLength++

}

if(Total Coeff(coeff token) < maxNumCoeff) {

total_zeros 3|4 | ce(v)

zerosL eft = total_zeros

} dse

zerosLeft=0

for(i=0; i< Total Coeff(coeff token) —1;i++){

if(zerosLeft>0) {

run_before 3|4 | ce(v)

run[i] =run_before

} dse

run[i]=0

zerosLeft = zerosLeft —run[i]

44 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

run[Total Coeff(coeff token) —1] = zerosL eft

coeffNum = -1

for(i = TotalCoeff(coeff token)—1;i>=0;i--){

coeffNum+=run[i] +1

coeffLevel[coeffNum] =level[i]

7.3.5.3.2 Residual block CABAC syntax

residual_block_cabac(coeffLevel, maxNumCoeff) {

Descriptor

coded_block flag

314

ae(v)

if(coded_block_flag) {

numCoeff = maxNumCoeff

i=0

do{

significant_coeff_flag[i]

34

ae(v)

if(significant_coeff_flag[i]) {

last_significant_coeff_flag[i]

34

ae(v)

if(last_significant_coeff flag[i]) {

numCoeff =i + 1

for(j = numCoeff; j < maxNumCoeff; j++)

coeffLevel[] =0

}

i++

} while(i < numCoeff-1)

coeff_abs level_minusl] numCoeff-1]

34

ae(v)

coeff_sign_flag[numCoeff-1]

314

ae(v)

coeffLevel[numCoeff-1] =
(coeff_abs level_minusl] numCoeff —1]+ 1) *
(1-2* coeff_sign flag numCoeff —17)

for(i = numCoeff-2; i >=0; i--) {

if(significant_coeff_flag[i]) {

coeff_abs level_minusl|i]

314

ae(v)

coeff_sign_flag[i]

34

ae(v)

coeffLevel[i] = (coeff_abs level_minusl[i]+1)*
(1-2* coeff_sign flag[i])

} else

coeffLevel[1] =0

}

} else

for(i=0; i < maxNumCoeff; i++)

coeffLevel[1] =0

DRAFT ITU-T Rec. H.264 (2002 E)

45

7.4 Semantics

7.4.1 NAL unit semantics

NOTE - The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNAL unit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesiInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified
outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref _idc not equal to O specifies that the content of the NAL unit contains a sequence parameter set or a picture
parameter set or a slice of areference picture or a slice data partition of areference picture.

nal_ref_idc egual to O for a NAL unit containing a slice or dlice data partition indicates that the slice or dice data
partition is part of a non-reference picture.

nal_ref_idc shall not be equal to O for sequence parameter set or picture parameter set NAL units. When nal_ref_idc is
equal to O for one slice or slice data partition NAL unit of a particular picture, it shall be equal to O for al slice and slice
data partition NAL units of the picture.

nal_ref_idc shall be not be equal to 0 for IDR NAL units, i.e.,, NAL unitswith nal_unit_type equal to 5.
nal_ref_idc shall be equal to O for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. VCL NAL
units are specified as those NAL units having nal_unit_type equal to 1 to 5, inclusive. All remaining NAL units are
called non-VCL NAL units.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal_unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equa to the value of
nal_unit_type and not categorized as"All".

46 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 7-1 — NAL unit type codes

nal_unit_type Content of NAL unit and RBSP syntax structure C

0 Unspecified

1 Coded dlice of anon-IDR picture 2,3,4
dlice layer without partitioning_rbsp()

2 Coded dlice data partition A 2
dlice_data partition_a layer rbsp()

3 Coded dlice data partition B 3
slice_data partition_b_layer rbsp()

4 Coded dlice data partition C 4
slice data partition ¢ layer rbsp()

5 Coded dlice of an IDR picture 2,3
dlice layer without partitioning_rbsp()

6 Supplemental enhancement information (SEI) 5
sei_rbsp()

7 Sequence parameter set 0
seq_parameter_set rbsp()

8 Picture parameter set 1
pic_parameter set rbsp()

9 Access unit delimiter 6
access unit_delimiter_rbsp()

10 End of sequence 7
end_of_seq rbsp()

11 End of stream 8
end_of_stream rbsp()

12 Filler data 9
filler data rbsp()

13..23 Reserved
24..31 Unspecified

NAL units that use nal_unit_type equal to O or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.

NOTE — NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_typeis specified in this Recommendation | International Standard.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.
NOTE — This requirement allows future definition of compatible extensions to this Recommendation | International Standard.

In the text, coded slice NAL unit collectively refers to a coded slice of anon-IDR picture NAL unit or to a coded slice of
an IDR picture NAL unit.

When the value of nal_unit_type is equal to5 for a NAL unit containing a slice of a coded picture, the value of
nal_unit_type shall be 5 in all other VCL NAL units of the same coded picture. Such a picture is referred to as an IDR
picture.

NOTE — Slice data partitioning cannot be used for IDR pictures.
rbsp_byte i] isthei-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.
- |f the SODB is empty (i.e., zero bitsin length), the RBSP is also empty.
- Otherwise, the RBSP contains the SODB as follows.

DRAFT ITU-T Rec. H.264 (2002 E) 47

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp_trailing_bits() are present after the SODB as follows:

i) Thefirst (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB,
(if any)
ii) The next bit consists of asinglerbsp_stop_one_bit equal to 1, and

iii) When the rbsp stop_one bit is not the last bit of a byte-aigned byte, one or more
rbsp_alignment_zero_bit is present to result in byte alignment.

3) One or more cabac zero word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing_bits(') at the end of the RBSP.

Syntax structures having these RBSP properties are denoted in the syntax tables using an " _rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structuresto the NAL units shall be as specified in Table 7-1.

NOTE - When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits
of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, and
discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the
decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byteis abyte equal to 0x03. When an emulation_prevention_three byteis present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
— 0x000000
— 0x000001
— 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

— 0x00000300
— (0x00000301
— (0x00000302
— (0x00000303

74.11 Encapsulation of an SODB within an RBSP (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention three byte for
encapsulation of an RBSP within aNAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within aNAL unit,

— to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop_one_bit starting at the end of the RBSP, and

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero _word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP datais searched for byte-aligned bits of the following binary patterns:

‘00000000 00000000 000000XX' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 isinserted to replace these bit patterns with the patterns

‘00000000 00000000 00000011 OOOOOOXX',

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in a
cabac_zero_word), afinal byte equal to 0x03 is appended to the end of the data.

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type
of RBSP data structure it contains. This results in the construction of the entire NAL unit.

48 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

This process can allow any SODB to be represented in a NAL unit while ensuring that
— no byte-aligned start code prefix is emulated within the NAL unit, and

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.1.2 Order of NAL unitsand association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream. Any order of NAL unitsin the bitstream
obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in
subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. Decoders conforming to this
Recommendation | International Standard shall be capable of receiving NAL units and their syntax elements in decoding
order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPsand their activation

NOTE — The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using areliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures.

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) isreferred to by a coded slice NAL
unit or coded dice data partition A NAL unit (using that value of pic_parameter_set id), it is activated. This picture
parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the activation of another
picture parameter set RBSP. A picture parameter set RBSP, with that particular value of pic_parameter_set_id, shall be
available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set
RBSP shall have the same content as that of the active picture parameter set RBSP unless it follows the last VCL NAL
unit of a coded picture and precedes the first VCL NAL unit of another coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs
or one or more SEI NAL units containing a buffering period SEI message.

When a sequence parameter set RBSP (with a particular value of seq parameter_set id) is referred to by activation of a
picture parameter set RBSP (using that value of seq_parameter_set_id) or isreferred to by an SEI NAL unit containing a
buffering period SEI message (using that value of seq parameter_set id), it is activated. This sequence parameter set
RBSP is called the active sequence parameter set RBSP until it is deactivated by the activation of another sequence
parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq parameter set id, shall be
available to the decoding process prior to its activation. An activated sequence parameter set RBSP shall remain active
for the entire coded video sequence.

Any sequence parameter set NAL unit containing the value of seq parameter_set id for the active sequence parameter
set RBSP shall have the same content as that of the active sequence parameter set RBSP unless it follows the last access
unit of a coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering
period SEI message (when present) of another coded video sequence.
NOTE — If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that
these constraints are obeyed.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences
A bitstream conforming to this Recommendation | International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. The order of NAL units and coded pictures and their
association to access unitsis described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
seguence are non-1DR access units.

DRAFT ITU-T Rec. H.264 (2002 E) 49

The values of picture order count for the coded pictures in consecutive access units in decoding order containing non-
reference pictures shall be non-decreasing.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access
unit.

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit has
a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the bitstream
and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL unitsand coded pictures and association to access units

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
subclause 7.4.1.2.5.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
anew access unit.

- accessunit delimiter NAL unit (when present)

- sequence parameter set NAL unit (when present)

- picture parameter set NAL unit (when present)

- SEI NAL unit (when present)

- NAL unitswith nal_unit_typein the range of 13 to 18, inclusive
- first VCL NAL unit of aprimary coded picture (always present)

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause
74.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit.

- When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

- When any SEI NAL units are present, they shall precede the primary coded picture.

- When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit

- The primary coded picture shall precede the corresponding redundant coded pictures.

- When redundant coded pictures are present, they shal be ordered in ascending order of the value of
redundant_pic_cnt.

- When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any).
- When an end of stream NAL unit is present, it shall be the last NAL unit.

- NAL units having nal_unit_type equal to 0, 12, or in the range of 19 to 31, inclusive, shall not precede the first VCL
NAL unit of the primary coded picture.

NOTE — Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot
follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a
New access unit.

NOTE — When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may not be referred to in the coded
pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit_type equal to O, 7, 8, or in the range of 12
to 31, inclusive, is shown in Figure 7-1.

50 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

start

L

access unit delimiter ‘

primary coded picture

redundant coded picture

end of sequence

end of stream

end

DRAFT ITU-T Rec. H.264 (2002 E) 51

- |If arbitrary dice order is alowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

- Otherwise (arbitrary slice order is not allowed), the order of coded slice of an IDR picture NAL units shall bein the
order of increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit.

The order of the VCL NAL units within a coded non-IDR pictureis constrained as follows.

- If arbitrary slice order is alowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
dlice data partition A NAL units may have any order relative to each other. A coded dlice data partition A NAL unit
with a particular value of dice id shall precede any present coded slice data partition B NAL unit with the same
value of dlice id. A coded dlice data partition A NAL unit with a particular value of dice id shall precede any
present coded slice data partition C NAL unit with the same value of dlice id. When a coded dice data partition B
NAL unit with a particular value of dlice id is present, it shall precede any present coded slice data partition C NAL
unit with the same value of dlice id.

- Otherwise (arbitrary dlice order is not allowed), the order of coded dlice of a non-IDR picture NAL units or coded
dlice data partition A NAL units shall be in the order of increasing macroblock address for the first macroblock of
each coded dlice of a non-IDR picture NAL unit or coded slice data partition A NAL unit. A coded slice data
partition A NAL unit with a particular value of dice id shall immediately precede any present coded slice data
partition B NAL unit with the same value of dlice id. A coded slice data partition A NAL unit with a particular
value of dlice _id shall immediately precede any present coded slice data partition C NAL unit with the same value of
dlice_id, when a coded dlice data partition B NAL unit with the same value of dlice_id is not present. When a coded
dlice data partition B NAL unit with a particular value of slice_id is present, it shall immediately precede any present
coded dlice data partition C NAL unit with the same value of dlice id.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to O or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 19 to 23, inclusive, which are reserved, shall not precede the first VCL
NAL unit of the primary coded picture within the access unit (when specified in the future by ITU-T | ISO/IEC).

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7421 Sequence parameter set RBSP semantics
profile_idc and level_idc indicate the profile and level to which the bitstream conforms, as specified in Annex A.

constraint_setO flag equal to 1l indicates that the bitstream obeys all constraints specified in subclause A.2.1.
constraint_setO flag equal to O indicates that the bitstream may or may not obey all constraints specified in subclause
A.2.1.

constraint_setl flag equal to 1l indicates that the bitstream obeys all constraints specified in subclause A.2.2.
constraint_setl flag equal to O indicates that the bitstream may or may not obey all constraints specified in subclause
A.2.2.

constraint_set?2 flag equal to 1l indicates that the bitstream obeys all constraints specified in subclause A.2.3.
constraint_set? flag equal to O indicates that the bitstream may or may not obey all constraints specified in subclause
A.2.3.

NOTE — When more than one of constraint_setO_flag, constraint_setl flag, or constraint_set? flag are equal to 1, the bitstream
obeys the constraints of al of the indicated subclauses of subclause A.2.

reserved_zero_5bits shall be equal to O in bitstreams conforming to this Recommendation | International Standard.
Other values of reserved zero 5bits may be specified in the future by ITU-T | ISO/IEC. Decoders shall ignore the value
of reserved_zero 5hits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq _parameter_set_id shall bein the range of 0 to 31, inclusive.

NOTE — When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence parameter
set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set_id.

log2_max_frame _num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related
derivations as follows:

MaxErameNum = 2(log2_max_frame_num_minus4 + 4) (7_ 1)

52 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

The value of log2_max_frame _num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order_cnt_type shall bein the range of 0to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following

- an access unit containing a non-reference frame followed immediately by an access unit containing a non-
reference picture

- two access units each containing a field with the two fields together forming a complementary non-reference
field pair followed immediately by an access unit containing a non-reference picture

- an access unit containing a non-reference field followed immediately by an access unit containing another non-
reference picture that does not form a complementary non-reference field pair with the first of the two access
units

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_Isb_minus4 + 4) (7_2)

The value of log2_max_pic_order_cnt_lsb_minus4 shall bein therange of 0 to 12, inclusive.

delta_pic_order_always zero flag equal to 1 specifies that delta pic_order_cnt[0] and delta pic order cnt[1] are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta pic_order_aways zero_flag
equal to0 gpecifies that delta pic order cnt[0] is present in the dlice headers of the sequence and
delta pic_order_cnt[1] may be present in the slice headers of the sequence.

offset_for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in 8.2.1. The
value of offset_for_non_ref_pic shall bein therange of -2** to 2*' - 1, inclusive.

offset_for_top_to bottom_field isused to calculate the picture order count of the bottom field in a frame as specified in
8.2.1. Thevalue of offset_for_top_to_bottom field shall bein the range of -2* to 2*! - 1, inclusive.

num_ref_frames in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. Thevalue of num_ref_frames in_pic_order_cnt_cycle shal bein the range of 0 to 255, inclusive.

offset_for_ref_frame[i] isan element of alist of num_ref_frames in_pic_order_cnt_cycle values used in the decoding
process for picture order count as specified in subclause 8.2.1. The value of offset_for_ref frame[i] shall be in the
range of -2** to 2*! - 1, inclusive.

num_ref_frames specifies the maximum total number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields used by the decoding process for inter prediction of any picture in
the sequence. num_ref_frames also determines the size of the sliding window operation as specified in subclause 8.2.5.3.
The value of num_ref_frames shall be in the range of 0 to 16, inclusive.

gaps in_frame _num_value allowed_flag specifies the allowed values of frame num as specified in subclause 7.4.3
and the decoding process in case of an inferred gap between values of frame_num as specified in subclause 8.2.5.2.

pic_width_in_mbs minusl plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks s derived as follows

PicWidthinMbs = pic_width_in_mbs minusl + 1 (7-3)
The variable for picture width for the luma component is derived as follows

PicWidthinSamples_ = PicWidthinMbs * 16 (7-4)
The variable for picture width for the chroma componentsis derived as follows

PicWidthinSamples; = PicwidthinMbs * 8 (7-5)

pic_height_in_map_units minusl plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightinMapUnits and PicSizelnMapUnits are derived as follows

PicHeightinMapUnits = pic_height_in_map_units minusl + 1 (7-6)

DRAFT I TU-T Rec. H.264 (2002 E) 53

PicSizelnMapUnits = PicWidthinMbs * PicHeightlnMapUnits (7-7)

frame_mbs_only_flag equal to O specifies that coded pictures of the coded video sequence may either be coded fields or
coded frames. frame_mbs_only_flag equal to 1 specifies that every coded picture of the coded video sequence is a coded
frame containing only frame macroblocks.

The adlowed range of vaues for pic width in mbs minusl, pic height in map units minusl, and
frame_mbs only flagis specified by constraintsin Annex A.

Depending on frame_mbs _only_flag, semantics are assigned to pic_height_in_map _units minusl as follows.

- If frame_mbs only flag is equal to O, pic_height_in_ map _units minusl is the height of a field in units of
macrobl ocks.

- Otherwise (frame_mbs_only flag is equal to 1), pic_height_in_map_units minusl is the height of a frame in units
of macrablocks.

The variable FrameHeightinMbs is derived as follows
FrameHeightinMbs = (2 —frame_mbs_only_flag) * PicHeightinMapUnits (7-8)

mb_adaptive frame field_flag equal to O specifies no switching between frame and field macroblocks within a picture.
mb_adaptive frame field_flag equal to 1 specifies the possible use of switching between frame and field macroblocks
within frames. When mb_adaptive frame _field_flag is not present, it shall be inferred to be equal to 0.

direct_8x8 inference flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16 and B_Direct 8x8 as specified in subclause 8.4.1.2. When frame _mbs_only flag is equal toO,
direct_8x8 inference flag shall be equal to 1.

frame_cropping_flag equa to 1l specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame_cropping_flag equal to O specifies that the frame cropping offset parameters are not present.

frame crop_left_offset, frame crop_right_offset, frame crop_top_offset, frame crop_bottom_offset specify the
samples of aframe within arectangle as follows.

— If frame_mbs_only flag is equal to 1, the cropping rectangle contains luma samples with horizontal coordinates
from 2* frame_crop_left offset to PicWidthinSamples_ - (2 * frame _crop_right_offset+1) and vertical
coordinates from 2 * frame_crop_top_offset to (FrameHeightinMbs * 16) - (2 * frame_crop_bottom_offset + 1),
inclusive. In this case, the value of frame_crop_left offset shall be in the range of 0 to 8 * PicWidthinMbs -
(frame_crop_right_offset + 1), inclusive; and the value of frame crop_top offset shall be in the range of 0
to 8 * FrameHeightinMbs - (frame_crop_bottom_offset + 1), inclusive.

— Otherwise (frame_mbs only flag is equal to 0), the cropping rectangle contains luma samples with horizontal
coordinates from 2* frame crop_left offset to PicWidthinSamples_ - (2 * frame crop_right offset + 1) and
vertical coordinates from 4 * frame_crop_top_offset to (FrameHeightinMbs* 16) -
(4* frame_crop_bottom_offset + 1), inclusive. In this case the value of frame crop left offset shall be in the
range of O to8* PicwWidthinMbs- (frame_crop_right_offset+1), inclusive; and the value of
frame_crop_top_offset shall be in the range of O to4* FrameHeightinMbs - (frame_crop_bottom_offset + 1),
inclusive.

When frame_cropping_flag is equal to 0, the following values shall be inferred: frame_crop_left_offset = O,
frame_crop_right_offset = 0, frame_crop_top_offset = 0, and frame_crop_bottom_offset = 0.

The specified samples of the two chroma arrays are the samples having frame coordinates (x / 2,y / 2), where (X, y)
are the frame coordinates of the specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters present_flag equal to 1 specifies that the vui_parameters() syntax structure specified in Annex E is
present next in the bitstream. vui_parameters present_flag equal to 0 specifies that the vui_parameters() syntax structure
specified in Annex E is not present next in the bitstream.

7.4.22 Pictureparameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the dlice header. The vaue of
pic_parameter_set_id shall bein the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq parameter_set id shall be in the
range of 0to 31, inclusive.

54 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

entropy_coding_mode flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows.

- If entropy_coding_mode flag is equa to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

- Otherwise (entropy_coding_mode flag is equal to 1), the method specified by the right descriptor in the syntax table
isapplied (CABAC, see subclause 9.3).

pic_order_present_flag equal to 1 specifies that the picture order count related syntax elements are present in the slice
headers as specified in subclause 7.3.3. pic_order_present_flag equal to O specifies that the picture order count related
syntax elements are not present in the slice headers.

num_slice_groups _minusl plus 1 specifies the number of slice groups for a picture. When num_slice_groups minusl is
equal to 0, all dlices of the picture belong to the same dlice group. The allowed range of num_slice_groups minusl is
specified in Annex A.

dlice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
dlice_group_map_type shall be in the range of 0 to 6, inclusive.

dlice_group_map_type equal to O specifiesinterleaved slice groups.

dlice_group_map_type equal to 1 specifies a dispersed slice group mapping.

dlice_group_map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.
slice_group_map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice_groups_minusl is not
equal to 1, slice_group_map_type shall not be equal to 3, 4, or 5.

dlice_group_map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows.

— If frame_mbs only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— Otherwise, if frame_mbs only flag is equal to 1 or a coded picture is afield, the slice group map units are units of
macroblocks.

— Otherwise (frame_mbs only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minusl[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
dlice group in raster scan order of slice group map units. The value of run_length_minusl| i] shall bein the range of 0 to
PicSizelnMapUnits - 1, inclusive.

top_left[i] and bottom_right[i] specify the top-left and bottom-right corners of a rectangle, respectively. top_left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, al of the following constraints shall be obeyed by the values of the syntax elements top left[i] and
bottom_right[i]

- top leftfi] shall be less than or equal to bottom right[i] and bottom right[i] shall be less than
PicSizelnMapUnits.

- (top_left[i] % PicwWidthinMbs) shall be less than or equal to the value of (bottom _right[i] % PicWidthinMbs).

dice group_change direction_flag is used with dlice group_map type to specify the refined map type when
dlice_group_map_typeis3, 4, or 5.

dlice_group_change rate minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a dlice group can change from one picture
to the next. The value of slice_group_change rate_ minusl shall bein the range of 0 to PicSizelnMapUnits— 1, inclusive.
The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group_change rate minusl + 1 (7-9)

pic_size in_map_units minusl is used to specify the number of dlice group map units in the picture.
pic_size in_map_units minusl shall be equal to PicSizelnMapUnits - 1.

dlice group_id[i] identifies a slice group of the i-th dlice group map unit in raster scan order. The size of the
dlice_group_id[i] syntax element is Ceil(Log2(hum_slice_groups _minusl + 1)) bits. The value of slice_group_id[i]
shall bein the range of 0to num_glice_groups minusl, inclusive.

DRAFT I TU-T Rec. H.264 (2002 E) 55

num_ref_idx_10_active_minusl specifies the maximum reference index for reference picture list 0 that shall be used to
decode each dlice of the picture in which list 0 is used when num_ref_idx_active override flag isequal to O for the slice.
When MbaffFrameFlag is equal to 1, num_ref_idx_10_active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref _idx_10_active minusl + 1 is the maximum index value for the decoding of field
macroblocks. The value of num_ref _idx 10 _active_minusl shall be in the range of 0 to 31, inclusive.

num_ref_idx_ |1 active minusl has the same semantics as num_ref idx 10 _active minusl with 10 and list O replaced
by 11 and list 1, respectively.

weighted_pred_flag equal to 0 specifies that weighted prediction shall not be applied to P and SP dlices.
weighted pred flag equal to 1 specifies that weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to0 specifies that the default weighted prediction shall be applied to B dlices.
weighted_bipred_idc equal tol specifies that explicit weighted prediction shall be applied to B dlices.
weighted_bipred_idc equal to 2 specifies that implicit weighted prediction shall be applied to B dices. The vaue of
weighted_bipred_idc shall bein therange of 0 to 2, inclusive.

pic_init_gp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. Theinitial value is modified at the
dice layer when a non-zero value of dice gp delta is decoded, and is modified further when a non-zero value of
mb_gp_deltais decoded at the macroblock layer. The value of pic_init_gp_minus26 shall be in the range of -26 to +25,
inclusive.

pic_init_gs minus26 specifies the initial value minus 26 of SliceQSy for al macroblocksin SP or Sl dlices. The initia
value is modified a the dlice layer when a non-zero value of dlice gs delta is decoded. The value of
pic_init_gs minus26 shall be in the range of -26 to +25, inclusive.

chroma_qgp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of QP¢ values.
The value of chroma_qgp_index_offset shall be in the range of -12 to +12, inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter_control_present_flag equal to O specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

constrained_intra_pred_flag equal to O specifies that intra prediction alows usage of residual data and decoded
samples of neighboring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks
coded using Intra macroblock prediction modes. constrained intra pred flag equal to 1 specifies constrained intra
prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual
data and decoded samplesfrom | or S| macroblock types.

redundant_pic_cnt_present_flag equal to O specifies that the redundant_pic_cnt syntax element is not present in slice
headers, data partitions B, and data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set. redundant_pic_cnt_present_flag equal to 1 specifies that the redundant_pic_cnt
syntax element is present in all sice headers, data partitions B, and data partitions C that refer (either directly or by
association with a corresponding data partition A) to the picture parameter set.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded
pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement infor mation message semantics

An SEI NAL unit contains one or more SElI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of bytesin the SEI payload.

ff_byteisabyte equal to OXFF identifying a need for alonger representation of the syntax structure that it is used within.
last_payload_type byteisthelast byte of the payload type of an SEI message.
last_payload_size byteisthelast byte of the size of an SEI message.

7.4.24 Accessunit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

56 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

primary_pic_type indicates that the slice_type values for al dlices of the primary coded picture are members of the set
listed in Table 7-2 for the given value of primary_pic_type.

Table 7-2 —Meaning of primary_pic_type

primary_pic_type | slice_type valuesthat may be present in the primary coded picture

0 I
I, P

I,P,B

Sl

S, SP

I, Sl

I, SI, P, SP
I,SI,P, SP, B

N[ojfoa|h~[wW|IN]|E

7.4.25 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall
be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding processis specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to OxFF. No normative decoding process is specified for
afiller data RBSP.

ff_byteisabyte equal to OxFF.

7.4.2.8 Slicelayer without partitioning RBSP semantics
The dlice layer without partitioning RBSP consists of a slice header and slice data.

7.4.29 Slicedata partition RBSP semantics

7.4.2.9.1 Slicedata partition A RBSP semantics

When dlice data partitioning is in use, the coded datafor asingle dliceis divided into three separate partitions. Partition A
contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

dlice_id identifies the dlice associated with the data partition. Each slice shall have a unique slice_id value within the
coded picture that contains the slice. When arbitrary slice order is not allowed as specified in Annex A, the first slice of a
coded picture, in decoding order, shall have dlice id equal to 0 and the value of slice id shall be incremented by one for
each subsequent slice of the coded picture in decoding order.

The range of dlice_id is specified asfollows.
— If MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizelnMbs - 1, inclusive.
— Otherwise (MbaffFrameFlag is equal to 1), dlice_id shall bein the range of 0 to PicSizelnMbs/ 2 - 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When dlice data partitioning is in use, the coded data for a single dlice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types | and S as specified in Table 7-7.

DRAFT ITU-T Rec. H.264 (2002 E) 57

dlice_id has the same semantics as specified in subclause 7.4.2.9.1.

redundant_pic_cnt shall be equal to O for slices and slice data partitions belonging to the primary coded picture. The
redundant_pic_cnt shall be greater than O for coded slices and coded slice data partitions in redundant coded pictures.
When redundant_pic_cnt is not present, its value shall be inferred to be equal to 0. The value of redundant_pic_cnt shall
bein the range of 0 to 127, inclusive.

The presence of a dlice data partition B RBSP is specified as follows.

- If the syntax elements of a dlice data partition A RBSP indicate the presence of any syntax elements of category 3 in
the dice data for a dice, a dice data partition B RBSP shall be present having the same value of dlice id and
redundant_pic_cnt asin the dlice data partition A RBSP.

- Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same value of
dice id and redundant_pic_cnt asin the slice data partition A RBSP.

7.4.2.9.3 Slicedata partition C RBSP semantics

When dlice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-7.

dlice_id has the same semantics as specified in subclause 7.4.2.9.1.
redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.
The presence of a dlice data partition C RBSP is specified as follows.

- If the syntax elements of a dlice data partition A RBSP indicate the presence of any syntax elements of category 4 in
the dice data for a slice, a dice data partition C RBSP shall be present having the same value of dlice id and
redundant_pic_cnt asin the slice data partition A RBSP.

- Otherwise (the syntax elements of a dlice data partition A RBSP do not indicate the presence of any syntax elements
of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same value of
dice id and redundant_pic_cnt asin the slice data partition A RBSP.

7.4.2.10 RBSP dlicetrailing bits semantics
cabac zero word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesinVcINALunits be the sum of the values of NumBytesinNALunit for all VCL NAL units of a coded
picture.

When entropy_coding_maode flag is equal to 1, the number of bins resulting from decoding the contents of all VCL NAL
units of a coded picture shall not exceed (32 + 3) * NumBytesinVcINALunits + 96 * PicSizelnMbs.

NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesinVcINALunits. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero_word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one bit isasingle bit equal to 1.
rbsp_alignment_zero_bit isasingle bit equal to 0.
7.4.3 Slice header semantics

When present, the value of the dlice header syntax elements pic_parameter_set_id, frame num, field pic flag,
bottom_field flag, idr_pic_id, pic_order_cnt_|sb, delta pic_order_cnt_bottom, delta pic_order_cnt[0],
delta pic_order_cnt[1], sp_for_switch_flag, and slice_group_change cycle shall be the same in all slice headers of a
coded picture.

first_mb_in_dlice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first_mb_in_slice shall not be less than the value of first_mb_in_slice for any other
dlice of the current picture that precedes the current slice in decoding order.

The first macroblock address of the slice is derived as follows.

58 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

— If MbaffFrameFlag is equa to O, first_mb_in_slice is the macroblock address of the first macroblock in the dlice,
and first_mb_in_slice shall bein the range of 0 to PicSizelnMbs - 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), first mb_in dice* 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first_mb_in_slice shall be in
the range of 0 to PicSizelnMbs/ 2 - 1, inclusive.

dlice_type specifies the coding type of the slice according to Table 7-3.

Table 7-3 — Name association to slice_type

dlice_type Name of dlice_type
P (Pdlice)

B (B dlice)

I (I slice)

SP (SP dlice)
Sl (Sl dlice)
P (Pdlice)

B (B dlice)

I (I dlice)

SP (SP dlice)
Sl (Sl dlice)

Ol |N|oju|d|W[IN|FL|O

dlice _type values in the range 5..9 specify, in addition to the coding type of the current dlice, that all other slices of the
current coded picture shall have avalue of dice _type equal to the current value of slice type or equal to the current value
of dice type—5.

When nal_unit_typeisequal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range
of 0to 255, inclusive.

frame num is used as a unique identifier for each short-term reference frame and shall be represented by
log2_max_frame_num_minus4 + 4 bitsin the bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.
- If thecurrent pictureis an IDR picture, PrevRefFrameNum is set equal to 0.

- Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set equal to the value of frame_num for
the previous access unit in decoding order that contains a reference picture.

The value of frame_num is constrained as follows.
- If the current pictureis an IDR picture, frame_num shall be equal to 0.

- Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame_num
for the current picture shall not be equal to PrevRefFrameNum unless al of the following three conditions are true.

- thecurrent picture and the preceding reference picture belong to consecutive access unitsin decoding order
- thecurrent picture and the preceding reference picture are reference fields having opposite parity

- one or more of the following conditionsistrue
— the preceding reference picture isan IDR picture

— the preceding reference picture includes a memory _management_control _operation syntax element equal
to5

NOTE — When the preceding reference picture includes a memory_management_control_operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame num equa to
PrevRefFrameNum

DRAFT I TU-T Rec. H.264 (2002 E) 59

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture

When gaps_in_frame_num_vaue_allowed flag is equal to0 and frame num is not equal to PrevRefFrameNum,
frame_num shall be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

When the value of frame _num is not equal to PrevRefFrameNum, there shall not be any previous field or frame in
decoding order that is currently marked as "used for short-term reference” that has a value of frame_num equal to any
value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame_num) (7-10)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

A picture including a memory_management_control_operation egqual to 5 shall have frame_num constraints as described
above, however, after the decoding of the current picture and the processing of the memory management control
operations, shall be inferred to have had frame_num equal to O for all subsequent use in the decoding process.

NOTE — When the primary coded picture is not an IDR picture and does not contain memory_management_control_operation
syntax element equal to 5, the value of frame_num of a corresponding redundant coded picture is the same as the value of
frame num in the primay coded picture. Alternatively, the redundant coded picture includes a
memory_management_control_operation syntax element equal to5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the diceisaslice of a coded field. field_pic_flag equal to O specifies that the dice
isasdlice of acoded frame. When field_pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = (mb_adaptive frame field_flag && !field_pic flag) (7-11)
The variable for the picture height in units of macroblocksis derived as follows

PicHeightinMbs = FrameHeightinMbs/ (1 + field_pic _flag) (7-12)
The variable for picture height for the luma component is derived as follows

PicHeightlnSamples, = PicHeightinMbs* 16 (7-13)
The variable for picture height for the chroma component is derived as follows

PicHeightlnSamplesc = PicHeightinMbs * 8 (7-14)
The variable PicSizelnMbs for the current pictureis derived according to:

PicSizelnMbs = PicWidthinMbs * PicHeightinMbs (7-15)

The variable MaxPicNum is derived as follows.

- If field_pic_flagisequal to 0, MaxPicNum is set equal to MaxFrameNum.

- Otherwise (field_pic_flagisequal to 1), MaxPicNum is set equal to 2* MaxFrameNum.
The variable CurrPicNum is derived as follows.

- Iffield_pic_flagisequal to O, CurrPicNum is set equal to frame_num.

- Otherwise (field_pic_flagisequal to 1), CurrPicNum is set equal to 2 * frame_num + 1.

bottom_field_flag equal to 1 specifies that the dlice is part of a coded bottom field. bottom_field flag equal to O
specifies that the picture is a coded top field. When this syntax element is not present for the current dlice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in al the slices of an IDR picture shall remain unchanged.
When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of
the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of
idr_pic_id shall bein the range of 0 to 65535, inclusive.

60 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or
for a coded field. The size of the pic_order_cnt_|sb syntax element islog2_max_pic_order_cnt_Isb_minus4 + 4 hits. The
value of the pic_order_cnt_Isb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of a
coded frame as follows.

- If the current picture includes a memory management _control_operation equal to 5, the vaue of
delta pic_order_cnt_bottom shall bein the range of (1 — MaxPicOrderCntLsb) to 2* - 1, inclusive.

- Otherwise (the current picture does not include a memory_management_control_operation equal to 5), the value of
delta pic_order_cnt_bottom shall be in the range of —2** to 2*' - 1, inclusive.

When this syntax element is not present in the bitstream for the current dlice, it shall be inferred to be equal to 0.

delta pic order_cnt[0] specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta pic_order_cnt[O] shall be
in the range of -2* to 2*! - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall beinferred to be equal to 0.

delta pic order_cnt[1] specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.1. The value of delta_pic_order_cnt[1] shall be in the range of -
2% t0 2*! - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred
to be equal to 0.

redundant_pic cnt shall be equal to O for slices and slice data partitions belonging to the primary coded picture. The
value of redundant_pic_cnt shall be greater than O for coded slices or coded slice data partitions of a redundant coded
picture. When redundant_pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant_pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE - There should be no noticeable difference between any area of the decoded primary picture and a corresponding area that
would result from application of the decoding process specified in clause 8 for any redundant picture in the same access unit.

The value of pic_parameter_set_id in a coded slice or coded dlice data partition of a redundant coded picture shall be
such that the value of pic_order_present_flag in the picture parameter set in use in a redundant coded picture is equal to
the value of pic_order_present_flag in the picture parameter set in use in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field_pic_flag, bottom_field flag, and idr_pic_id.

When the value of nal_ref_idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref_idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE — The above constraint also has the following implications. If the value of nal_ref_idc for the VCL NAL units of the
primary coded picture is equal to O, the value of nal_ref_idc for the VCL NAL units of any corresponding redundant coded picture
are equal to O; otherwise (the value of nal_ref_idc for the VCL NAL units of the primary coded picture is greater than 0), the value
of nal_ref_idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame_num after the decoded reference picture marking process
as specified in subclause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the same
access unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead of the
primary coded picture) of the access unit would be decoded.

NOTE — The above constraint also has the following implications.

If a primary coded picture is not an IDR picture, the contents of the dec_ref_pic_marking() syntax structure must be identical in
all slice headers of the primary coded picture and all redundant coded pictures corresponding to the primary coded picture.

Otherwise (a primary coded picture is an IDR picture), the following applies.
If a redundant coded picture corresponding to the primary coded picture is an IDR picture, the contents of the

dec_ref_pic_marking() syntax structure must be identical in all slice headers of the primary coded picture and the redundant
coded picture corresponding to the primary coded picture.

Otherwise (a redundant picture corresponding to the primary coded picture is not an IDR picture), al slice headers of the
redundant picture must contain a dec_ref_pic_marking syntax() structure including a memory_management_control_operation
syntax element equal to 5, and the following applies.

If the value of long_term_reference_flag in the primary coded picture is equal to O, the dec_ref pic_marking syntax structure of
the redundant coded picture must not include a memory_management_control_operation syntax element equal to 6.

Otherwise (the value of long_term_reference flag in the primary coded picture is equal to 1), the dec_ref pic_marking syntax
structure of the redundant coded picture must include memory_management_control_operation syntax elements equal to 5, 4, and
6 in decoding order, and the value of max_long_term_frame_idx_plusl must be equal to 1, and the value of long_term_frame_idx
must be equal to 0.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical regardless

DRAFT ITU-T Rec. H.264 (2002 E) 61

whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of the access
unit would be decoded.

Thereis no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant_pic_cnt in the slice header of a coded dlice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded dlice or coded slice data partition of a primary picture.
NOTE — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or 10sses in
transmission of the sequence and a coded redundant slice can be correctly decoded, the decoder should replace the samples of the

decoded primary picture with the corresponding samples of the decoded redundant slice. When more than one redundant slice
covers the relevant region of the primary picture, the redundant slice having the lowest value of redundant_pic_cnt should be used.

Redundant dlices and dlice data partitions having the same value of redundant_pic_cnt belong to the same redundant
picture. Decoded dlices within the same redundant picture need not cover the entire picture area and shall not overlap.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows.

- If direct_spatial_mv_pred flag is equal to 1, the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct _8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2.

- Otherwise (direct_spatiad_mv_pred flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct_8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified in
subclause 8.4.1.2.3.

num_ref_idx_active override flag equal toO specifies that the values of the syntax elements
num_ref_idx_|10_active minusl and num_ref_idx_I1 active minusl specified in the referred picture parameter set arein
effect. num_ref_idx_active override flag equal to1l specifies that the num_ref_idx_I0 active minusl and
num_ref_idx_|1 active minusl specified in the referred picture parameter set are overridden for the current dslice (and
only for the current slice) by the following valuesin the slice header.

When the current dlice is a P, SP, or B dice and field pic flag is equal to0 and the value of
num_ref_idx_|10_active minusl in the picture parameter set exceeds 15, num_ref_idx_active override flag shal be
equal to 1.

When the current sliceisaB slice and field_pic_flag is equal to 0 and the value of num_ref_idx_I1 active minusl in the
picture parameter set exceeds 15, num_ref_idx_active override flag shall be equal to 1.

num_ref_idx_10_active_minusl specifies the maximum reference index for reference picture list O that shall be used to
decode the dlice.

Therange of num_ref_idx_10_active_ minusl is specified as follows.

— If field_pic _flag is equal to O, num_ref_idx_l10_active minusl shall be in the range of O to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref_idx_I0_active_ minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref_idx_I0_active minusl + 1 is the maximum index value for the decoding of
field macroblocks.

— Otherwise (field_pic flagisequal to 1), num_ref _idx_|10_active minusl shall be in the range of 0 to 31, inclusive.

num_ref_idx_|1_active_ minusl has the same semantics as num_ref_idx_10_active minusl with 10 and list O replaced
by 11 and list 1, respectively.

cabac init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

dice gp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qgp_deltain the macroblock layer. Theinitia QPy quantisation parameter for the slice is computed as:

SliceQPy = 26 + pic_init_gp_minus26 + slice_qp_delta (7-16)

The value of dice_gp_delta shall be limited such that QPy isin the range of 0 to 51, inclusive.
sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP dlice as follows.

- If sp for_switch flag is equal to 0, the P macroblocks in the SP dlice shall be decoded using the SP decoding
process for non-switching pictures as specified in subclause 8.6.1.

- Otherwise (sp_for_switch flag isequal to 1), the P macroblocksin the SP slice shall be decoded using the SP and Sl
decoding process for switching pictures as specified in subclause 8.6.2.

62 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

dlice_gs delta specifies the value of QSy for all the macroblocks in SP and Sl dlices. The QS, quantisation parameter
for the slice is computed as:

QSy =26 + pic_init_gs minus26 + dlice gs delta (7-17)

The value of slice_gs_delta shall be limited such that QSy isin the range of 0 to 51, inclusive. Thisvalue of QSy isused
for the decoding of all macroblocks in Sl slices with mb_type equal to Sl and al macroblocks in SP dlices with
prediction mode equal to inter.

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable_deblocking_filter_idc is not
present in the slice header, the value of disable_deblocking_filter_idc shall beinferred to be equal to 0.

The value of disable deblocking_filter_idc shall be in the range of 0 to 2, inclusive.

dlice_alpha_cO_offset_div2 specifies the offset used in accessing the a and tc, deblocking filter tables for filtering
operations controlled by the macroblocks within the dice. From this value, the offset that shall be applied when
addressing these tables shall be computed as:

FilterOffsetA = dlice_alpha_c0_offset_div2<<1 (7-18)
Thevalue of slice_apha c0 offset_div2 shall bein the range of -6 to +6, inclusive. When slice apha c0_offset_div2is
not present in the slice header, the value of slice_apha c0_offset_div2 shall be inferred to be equal to 0.

dlice beta offset_div2 specifies the offset used in accessing the 3 deblocking filter tablefor filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the (3 table of
the deblocking filter shall be computed as:

FilterOffsetB = dlice beta offset div2<<1 (7-19)
The value of dice beta offset div2 shall be in the range of -6 to +6, inclusive. When dlice beta offset div2 is not
present in the slice header the value of dlice beta offset_div2 shall be inferred to be equal to 0.

dlice_group_change cycle is used to derive the number of dlice group map units in slice group 0 when
dlice group_map_typeisequal to 3, 4, or 5, as specified by

MapUnitsinSliceGroup0 = Min(slice_group_change cycle* SliceGroupChangeRate, PicSizelnMapUnits) (7-20)
The value of dlice_group_change_cycleis represented in the bitstream by the following number of bits
Ceil(Log2(PicSizelnMapUnits , SliceGroupChangeRate + 1)) (7-21)

The value of slice_group_change cycle shall be in the range of 0 to Ceil(PicSizelnMapUnits, SliceGroupChangeRate),
inclusive.

74.3.1 Referencepicturelist reordering semantics

The syntax elements reordering_of_pic_nums idc, abs diff pic hum_minusl, and long_term_pic_num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_reordering_flag 10 equal to 1 specifies that the syntax element reordering_of _pic_nums idc is present for
specifying reference picture list 0. ref_pic_list_reordering_flag_10 equal to O specifies that this syntax element is not
present.

When ref_pic_list_reordering_flag_I0 is equal to 1, the number of times that reordering_of pic_nums_idc is not equal
to 3 following ref_pic list_reordering_flag 10 shall not exceed num_ref_idx_I0_active_minusl + 1.

When RefPicListO] num_ref idx |10 active minusl] in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equa to "no reference picture®, ref pic list reordering flag 10 shall be equal tol and
reordering_of pic_nums_idc shall not be equal to 3 until RefPicListO] num_ref _idx_10_active minusl] in the reordered
list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture”.

ref_pic_list_reordering_flag_I1 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 1. ref_pic_list_reordering flag_11 equal to O specifies that this syntax element is not
present.

When ref_pic_list_reordering_flag |1 is equal to 1, the number of times that reordering_of _pic_nums_idc is not equal
to 3 following ref_pic list_reordering_flag 11 shall not exceed num_ref_idx_I1 active minusl + 1.

DRAFT I TU-T Rec. H.264 (2002 E) 63

When decoding a B slice and RefPicListl] num_ref idx_I1 active minusl] in theinitial reference picture list produced
as specified in subclause 8.2.4.2 is equal to "no reference picture”, ref_pic _list_reordering_flag |1 shall be equal to 1 and
reordering_of pic_nums_idc shall not be equal to 3 until RefPicListl] num_ref idx 11 active minusl] in the reordered
list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture”.

reordering_of_pic_nums_idc together with abs diff_pic_num_minusl or long_term_pic_num specifies which of the
reference pictures are re-mapped. The values of reordering_of pic_nums_idc are specified in Table 7-4. The value of the
first reordering_of pic nums idc that follows immediately after ref pic list_reordering flag 10 or
ref_pic_list_reordering_flag_I1 shall not be equal to 3.

Table 7-4 —reordering_of pic_nums idc operationsfor reordering of reference picturelists

reordering_of pic_nums_idc Reordering specified

0 abs diff_pic_num_minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs diff_pic_num_minusl is present and corresponds to a difference to
add to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for areference picture

3 End loop for reordering of theinitial reference picture list

abs diff_pic_ num_minusl plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value.

The range of abs _diff_pic_num_minusl is specified as follows.

- If reordering_of pic nums_idc is equal toO, abs diff pic num_minusl shall be in the range of 0 to
MaxPicNum/ 2 - 1.

- Otherwise (reordering_of_pic_nums idc is equal to 1), abs diff_pic_num_minusl shall be in the range of O to
MaxPicNum/ 2 - 2.

The allowed values of abs _diff_pic_num_minusl are further restricted as specified in subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pair marked as "used for long-term reference”. When decoding a
coded field, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference”.

7.4.3.2 Prediction weight table semantics

luma_log2 weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma_log2_weight_denom shall be in the range of 0 to 7, inclusive.

chroma_log2 weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma_log2_weight_denom shall be in the range of 0 to 7, inclusive.

luma_weight_|0_flag equal to 1 specifies that weighting factors for the luma component of list O prediction are present.
luma_weight_10_flag equal to O specifies that these weighting factors are not present.

luma_ weight 0[] is the weighting factor applied to the luma prediction value for list O prediction using
RefPicListO[i]. The value of luma weight 10[i] shall be in the range of -128 to127, inclusive. When
luma weight |0 flag is equal to0, luma weight [0[i] shall be inferred to be equal to 2'malcg2-weightdenom g
RefPicListO[i].

luma_offset_10[i] isthe additive offset applied to the luma prediction value for list O prediction using RefPicListO[i].
The value of luma_offset_I0[i] shall bein the range of —128 to 127, inclusive. When luma_weight_|0 flagis equal to 0,
luma_offset_I0[i] shall beinferred as equal to O for RefPicListO[i].

chroma_weight_|0 flag equal to 1 specifies that weighting factors for the chroma prediction values of list O prediction
are present. chroma_weight_|0_flag equal to O specifies that these weighting factors are not present.

64 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

chroma_weight _I0[i][]] is the weighting factor applied to the chroma prediction values for list O prediction using
RefPicListO[i] with j equal to O for Cb and j equal to 1 for Cr. The value of chroma weight [0[i][]] shall be in the
range of —128 to 127, inclusive. When chroma_weight_10_flag is equal to O, chroma_weight_10[i] shall be inferred to
be equal to 2"omaleaZ weight_denom ¢4 RefPicl stOf i .

chroma_offset 10[i][]j] is the additive offset applied to the chroma prediction values for list O prediction using
RefPicListO[i] with j equal to O for Cb and j equal to 1 for Cr. The value of chroma_offset_IO[i][]] shall be in the
range of -128 to 127, inclusive. When chroma weight 10_flag is equal to O, chroma_offset_10[i] shall be inferred to be
equal to O for RefPicListO[i].

luma_weight_I1 flag, luma_weight_11, luma_offset_11, chroma_weight_l1 flag, chroma_weight_I1,
chroma_offset_I1 have the same semantics as Iuma weight 10 flag, Iuma weight 10, luma_offset |0,
chroma_weight_10_flag, chroma weight_10, chroma_offset_|0, respectively, with 10, list 0, and ListO replaced by 11,
list 1, and List1, respectively.

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output_of _prior_pics flag, long_term_reference flag, adaptive ref pic_marking_mode flag,
memory_management_control_operation, difference of_pic_nums minusl, long_term_frame idx, long_term_pic_num,
and max_long_term_frame_idx_plusl specify marking of the reference pictures.

The marking of a reference picture can be "unused for reference”, "used for short-term reference”, or "used for long-term
reference”, but only one of these three. When areference picture is referred to have the marking "used for reference” this
collectively refers to the picture being marked as "used for short-term reference” or "used for long-term reference”, but
not both.

The syntax element adaptive ref pic_marking_mode flag and the content of the decoded reference picture marking
syntax structure shall be identical for all coded slices of a coded picture.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

- |If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure shall be inferred to be equal to 2.

- Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking
repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking
syntax structure shall be inferred to be equal to 5.

no_output_of prior_pics flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of prior_pics flag has no effect on the decoding process. When the IDR picture is not the first IDR
picture in the bitstream and the value of PicWidthinMbs, FrameHeightinMbs, or max_dec_frame_buffering derived from
the active sequence parameter set is different from the value of PicWidthinMbs, FrameHeightinMbs, or
max_dec frame buffering derived from the sequence parameter set active for the preceding sequence,
no_output_of prior_pics flag equal to 1 may be inferred by the decoder, regardless of the actual value of
no_output_of prior_pics flag.

long_term_reference flag equa to O specifies that the MaxLongTermFrameldx variable is set equal to “no long-term
frame indices’ and that the IDR picture is marked as “used for short-term reference’. long_term_reference flag equal
to 1 specifies that the MaxLongTermFramel dx variable is set equal to 0 and that the current IDR picture is marked “ used
for long-term reference” and is assigned LongTermFramel dx egual to 0.

adaptive ref _pic_ marking_mode flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-5. adaptive ref pic_marking_mode flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference” is equal to
num_ref_frames.

DRAFT I TU-T Rec. H.264 (2002 E) 65

Table 7-5 — Interpretation of adaptive ref_pic marking_mode flag

adaptive ref_pic_marking_mode flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as “unused for reference” and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to manage the reference picture
marking. The memory_management_control_operation syntax element is followed by data necessary for the operation
specified by the value of memory_management_control_operation. The values and control operations associated with
memory_management_control_operation are specified in Table 7-6.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified short-term picture
is currently marked as "used for reference" and has not been assigned to a long-term frame index and is not assigned to a
long-term frame index in the same decoded reference picture marking syntax structure.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refersto aframe or field that is currently marked as "used for reference”.

memory_management_control_operation shall not be equal to3 in a dlice header unless the specified short-term
reference picture is currently marked as "used for reference” and has not previously been assigned a long-term frame
index and is not assigned to any other long-term frame index within the same decoded reference picture marking syntax
structure.

Not more than one memory _management_control_operation equal to 4 shall be present in a slice header.

memory_management_control_operation shall not be equal to5 in a dlice header unless no
memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

No more than one memory_management_control_operation shall be present in a slice header that specifies the same
action to be taken.

Table 7-6 — Memory management control operation (memory_management_control_operation) values

memory_management_control_operation | Memory Management Control Operation

0 End memory_management_control_operation
loop

1 Mark a short-term picture as
“unused for reference”

2 Mark aframe or field having along-term

picture number as
“unused for reference’

3 Assign along-term frame index to a short-
term picture

4 Specify the maximum long-term frame index

5 Mark all reference pictures as "unused for

reference” and set the
MaxLongTermFramel dx variable to "no long-
term frame indices’

6 Assign along-term frame index to the current
decoded picture

When decoding a field and a memory_management_control_operation command equal to 3 assigns a long-term frame
index to afield that is part of a short-term reference frame or a short-term complementary reference field pair, another
memory_management_control_operation command to assign the same long-term frame index to the other field of the

66 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

same frame or complementary reference field pair shall be present in the same decoded reference picture marking syntax
structure.

When the first field (in decoding order) of a complementary reference field pair includes a long_term reference flag
equal to 1 or a memory_management_control_operation command equal to 6, the decoded reference picture marking
syntax structure for the other field of the complementary reference field pair shal contain a
memory_management_control_operation command equal to 6 that assigns the same long-term frame index to the other
field.

difference of pic_ nums minusl is used (with memory _management_control _operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as “unused for
reference’. The resulting picture number derived from difference of pic nums minusl shall be a picture number
assigned to one of the reference pictures marked as "used for reference” and not previously assigned to a long-term
frame index.

The meaning of the resulting picture number is specified as follows.

- If field_pic flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.

- Otherwise (field_pic flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference
picture as "unused for reference”. The resulting long-term picture number derived from long_term_pic_num shall be
equal to along-term picture number assigned to one of the reference pictures marked as "used for long-term reference”.

The meaning of the resulting long-term picture number is specified as follows.

- If field_pic_flag is equal to O, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.

- Otherwise (field pic flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long term_frame idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term
frame index to a picture.

The presence and value of long_term_frame_idx is constrained as follows.

- If the variable MaxLongTermFrameldx is equal to “no long-term frame indices’, long_term_frame_idx shall not be
present.

- Otherwise (the variable MaxLongTermFrameldx is not equal to “no long-term frame indices’), the value of
long_term_frame idx shall bein the range of 0 to MaxLongTermFramel dx, inclusive.

max_long_term_frame idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for long-
term reference pictures (until receipt of another value of max_long_term_frame idx_plusl). The vaue of
max_long_term_frame idx_plusl shall bein the range of 0 to num_ref_frames, inclusive.

7.4.4 Slicedata semantics
cabac_alignment_one bit isabit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP dlice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or for
which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macrablock type is collectively referred
to as a B macroblock type. The value of mb_skip_run shall be in the range of 0 to PicSizelnMbs— CurrMbAddr,
inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP dlice, mb_type shal be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when
decoding a B dlice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip_flag equal to O specifies that the current macroblock is not skipped.

mb_field_decoding_flag equal to O specifies that the current macroblock pair is a frame macroblock pair.
mb_field _decoding_flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a
frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field macroblock
pair are referred to in the text as field macroblocks.

DRAFT ITU-T Rec. H.264 (2002 E) 67

When mb_field_decoding_flag is not present for either macroblock of a macroblock pair, the vaue of
mb_field_decoding_flag is derived as follows.

— If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same dlice,
the value of mb_field_decoding_flag shall be inferred to be equal to the value of mb_field decoding_flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

— Otherwise, if there is no neighbouring macraoblock pair immediately to the left of the current macroblock pair in the
same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the same
slice, the value of mb_field decoding_flag shall be inferred to be equal to the value of mb_field decoding flag for
the neighbouring macroblock pair immediately above the current macroblock pair,

— Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the current
macroblock pair in the same slice), the value of mb_field_decoding_flag shall be inferred to be equal to 0.

end_of_dlice flag equal to O specifies that another macroblock is following in the slice. end_of_dlice flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in subclause 8.2.2.

745 Macroblock layer semantics
mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for 1, SI, P, SP, and B dlices. Each table presents the
value of mb_type, the name of mb_type, the number of macroblock partitions used (given by the NumMbPart(mb_type)
function), the prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the
MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given by the
MbPartPredMode(mb_type, 1) function). When avalue is not applicable it is designated by “na’. In the text, the value
of mb_type may be referred to as the macroblock type and a value X of MbPartPredMode() may be referred to in the
text by "X macroblock (partition) prediction mode" or as“X prediction macroblocks’.

Table 7-7 shows the allowed collective macroblock types for each dlice type.
NOTE — There are some macroblock types with Pred_L O prediction mode that are classified as B macroblock types.

Table 7-7 — Allowed collective macroblock typesfor dice type

dlice_type allowed collective macraoblock types
| (slice) | (see Table 7-8) (macroblock types)
P (slice) P (see Table 7-10) and | (see Table 7-8) (macroblock types)
B (dlice) B (see Table 7-11) and | (see Table 7-8) (macroblock types)
Sl (dlice) Sl (see Table 7-9) and | (see Table 7-8) (macroblock types)
SP (dlice) P (see Table 7-10) and | (see Table 7-8) (macroblock types)

Macroblock types that may be collectively referred to as | macroblock types are specified in Table 7-8.

The macroblock typesfor | sicesare al | macroblock types.

68 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 7-8 —Macroblock typesfor | dices

«
©
. 8 : :
® =
s 35 = § 2
o (=° 3 ; [
o Q 39 et 0 =
> e el e o = @
i - [© g L
o =} = d kv S
£) g2 S S 3
% o & = k=] o
O — © m
< = = 3 z
£ 3 8
)
0 I_4x4 Intra_4x4 na na na
1 I_16x16_0 0 0 Intra_16x16 0 0 0
2 I_16x16_1 0 0 Intra_16x16 1 0 0
3 I_16x16_2 0 O Intra_16x16 2 0 0
4 |_16x16_3 0 0 Intra_16x16 3 0 0
5 1_16x16_ 0 1 O Intra_16x16 0 1 0
6 _16x16_1 1 O Intra_16x16 1 1 0
7 I_16x16_2 1 0 Intra_16x16 2 1 0
8 1_16x16_3 1 0 Intra_16x16 3 1 0
9 I_16x16. 0 2 0 Intra_16x16 0 2 0
10 I_16x16.1 2 0 Intra_16x16 1 2 0
11 1_16x16_2 2 O Intra_16x16 2 2 0
12 I_16x16_3 2 0 Intra_16x16 3 2 0
13 1_16x16_0 0_1 Intra_16x16 0 0 15
14 1_16x16_1 0_1 Intra_16x16 1 0 15
15 |_16x16_2 0 1 Intra_16x16 2 0 15
16 1_16x16_3 0_1 Intra_16x16 3 0 15
17 _16x16.0 1 1 Intra_16x16 0 1 15
18 |_16x16_1 1 1 Intra_16x16 1 1 15
19 1_16x16_2 1 1 Intra_16x16 2 1 15
20 |_16x16.3 1 1 Intra_16x16 3 1 15
21 1_16x16_0 2 1 Intra_16x16 0 2 15
22 I_16x16_1 2 1 Intra_16x16 1 2 15
23 |_16x16_2 2 1 Intra_16x16 2 2 15
24 1_16x16_3 2_1 Intra_16x16 3 2 15
25 |_PCM na na na na

The following semantics are assigned to the macroblock typesin Table 7-8:

|_4x4: the macraoblock is coded as an Intra_4x4 prediction macroblock.

DRAFT ITU-T Rec. H.264 (2002 E)

69

|_16x16 0 0 0,1_16x16 1 0 O,1_16x16_2 0 0,1_16x16 3 0 0,1_16x16 0 1 0,1 _16x16 1 1 0O,1_16x16 2 1 O,
|_16x16 3 1 0,1_16x16 0 2 0,1_16x16_1 2 0,1_16x16 2 2 0,1_16x16 3 2 0,1_16x16 0 0 1,1 _16x16 1 O 1,
|_16x16_2 0 1,1_16x16 3 0 1,1_16x16 0 1 1,1 16x16 1 1 1,1_16x16_2 1 1,1_16x16 3 1 1,1_16x16 0 2 1,
| 16x16 1 2 1,1 _16x16 2 2 1,1 _16x16 3 2 1: the macroblock is coded as an Intra_16x16 prediction mode
macroblock.

To each Intra_16x16 prediction macroblock, an Intraléx16PredMode is assigned, which specifies the Intra_16x16
prediction mode. CodedBlockPatternChroma contains the coded block pattern value for chroma as specified in
Table 7-12. CodedBlockPatternLuma specifies whether for the luma component non-zero AC transform coefficient
levels are present. CodedBlockPatternLuma equal to O specifies that there are no AC transform coefficient levelsin the
luma component of the macroblock. CodedBlockPatternLuma equal to 15 specifies that at least one AC transform
coefficient level is in the luma component of the macroblock, requiring scanning of AC transform coefficient levels for
all 16 of the 4x4 blocks in the 16x16 block.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra_4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked
as specified in subclause 8.3.2. Intra__16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to |_PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as SI macroblock type is specified in Table 7-9.

The macraoblock types for Sl dlices are specified in Table 7-9 and Table 7-8. The mb_type value 0 is specified in
Table 7-9 and the mb_type values 1 to 26 are specified in Table 7-8, indexed by subtracting 1 from the value of mb_type.

Table 7-9 —Macraoblock type with value O for Sl slices

mb_type
Name of mb_type
MbPartPredM ode
(mb_type, 0)
Intral6x16PredM ode

CodedBlockPatternChroma
CodedBlockPatternL uma

>
(Y]
>
QD

0 Sl Intra_4x4 na

The following semantics are assigned to the macroblock type in Table 7-9. The SI macroblock is coded as Intra_4x4
prediction macroblock.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-10.

The macroblock types for P and SP dlices are specified in Table 7-10 and Table 7-8. mb_type values 0 to 4 are specified
in Table 7-10 and mb_type values 5 to 30 are specified in Table 7-8, indexed by subtracting 5 from the value of

mb_type.

70 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 7-10 — Macroblock type values0to 4 for P and SP dlices

() () (]
o o 9 —
> bl o= SEEN -o_c—l —~ =~
) =) =° = = =
o o oo gy T =2 [CR=%
2 € 22 - < - & z2 L2
I “— sV a2 a2 [Iy
o] == e g é? o § o
E 2 SE SE S8E sk | 5k
zZ = =
0 P_LO 16x16 1 Pred LO na 16 16
1 P LO LO 16x8 2 Pred LO Pred LO 16 8
2 P_LO LO 8x16 2 Pred LO Pred LO 8 16
3 P_8x8 4 na na 8 8
4 P_8x8ref0 4 na na 8 8
inferred P_Skip 1 Pred_LO na 16 16

The following semantics are assigned to the macroblock typesin Table 7-10.
P_LO_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

P_LO_LO _MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two
luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated

chroma samples, respectively.

P_8x8: for each sub-macroblock an additional syntax element (sub_mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref_idx_10) is present in
the bitstream and ref_idx_10[mbPartldx] shall be inferred to be equal toO for al sub-macroblocks of the

macroblock (with indices mbPartldx equal to 0..3).
— P_Skip: no further datais present for the macroblock in the bitstream.
The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-10.

Pred LO: specifies that the inter prediction process is invoked using list O prediction. Pred LO is an Inter
macroblock prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-11.

The macroblock types for B slices are specified in Table 7-11 and Table 7-8. The mb_type values 0 to 22 are specified in
Table 7-11 and the mb_type values 23 to 48 are specified in Table 7-8, indexed by subtracting 23 from the value of

mb_type.

DRAFT ITU-T Rec. H.264 (2002 E) 71

Table 7-11 — Macroblock type values 0 to 22 for B slices

: . 85 8~ = |z

® 7 Ny =° = B9 | 29

5 E 5% BE BE 5| z%

g E 2¢ | %2 to | 8f| g2
Keo)
0 B_Direct 16x16 na Direct na 8 8
1 B_LO 16x16 1 Pred LO na 16 16
2 B_L1 16x16 1 Pred L1 na 16 16
3 B_Bi_16x16 1 BiPred na 16 16
4 B_LO LO 16x8 2 Pred LO Pred LO 16 8
5 B_LO LO 8x16 2 Pred_LO Pred_LO 8 16
6 B L1 L1 16x8 2 Pred L1 Pred L1 16 8
7 B L1 L1 8x16 2 Pred L1 Pred L1 8 16
8 B LO L1 16x8 2 Pred_LO Pred L1 16 8
9 B_LO L1 8x16 2 Pred LO Pred L1 8 16
10 B L1 LO 16x8 2 Pred L1 Pred LO 16 8
11 B L1 L0 8x16 2 Pred L1 Pred_LO 8 16
12 B_LO Bi_16x8 2 Pred LO BiPred 16 8
13 B_LO Bi_8x16 2 Pred LO BiPred 8 16
14 B L1 Bi_16x8 2 Pred L1 BiPred 16 8
15 B L1 Bi_8x16 2 Pred L1 BiPred 8 16
16 B_Bi_LO 16x8 2 BiPred Pred LO 16 8
17 B Bi_LO 8x16 2 BiPred Pred_LO 8 16
18 B Bi L1 16x8 2 BiPred Pred L1 16 8
19 B Bi L1 8x16 2 BiPred Pred L1 8 16
20 B_Bi_Bi_16x8 2 BiPred BiPred 16 8
21 B_Bi_Bi_8x16 2 BiPred BiPred 8 16
22 B _8x8 4 na na 8 8
inferred B_Skip na Direct na 8 8

The following semantics are assigned to the macroblock typesin Table 7-11:

— B_Direct_16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct_16x16), and MbPartHeight(B_Direct_16x16) are used in the derivation
process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

— B_X_16x16 with X being replaced by LO, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B_X_16x16 with X being replaced by either LO or L1, one motion vector difference and one reference index is

72 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

present in the bitstream for the macroblock. For a macroblock with type B_X_16x16 with X being replaced by Bi,
two motion vector differences and two reference indices are present in the bitstream for the macrobl ock.

— B_X0_X1_MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by LO, L1,
or Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma
partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either LO or L1, one
motion vector difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1
with X0 or X1 being replaced by Bi, two motion vector differences and two reference indices are present in the
bitstream for the macroblock partition.

— B_8x8: for each sub-macroblock an additional syntax element (sub_mb_type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

— B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
subclause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-11.

— Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B_Direct_16x16) in the bitstream. Direct is an Inter macroblock prediction mode.

Pred_LO: see semantics for Table 7-10.

Pred L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred L1 is an Inter
macroblock prediction mode.

BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode.

pcm_alignment_zero_bit isabit equal to 0.

pcm_byte| i | isasample value. pcm_byte[i] shall not be equal to 0. Thefirst 256 pcm_byte[i] values represent luma
sample values in the raster scan within the macroblock. The next (256 * (ChromaFormatFactor - 1)) / 2 pcm_byte| i]
values represent Cb sample values in the raster scan within the macroblock. The last
(256 * (ChromaFormatFactor - 1)) / 2 pcm_byte] i] values represent Cr sample values in the raster scan within the
macroblock.

coded_block_pattern specifies which of the six 8x8 blocks - luma and chroma - contain non-zero transform coefficient
levels. For macroblocks with prediction mode not equal to Intra_16x16, coded block_pattern is present in the bitstream
and the variables CodedBlockPatternL uma and CodedBlockPatternChroma are derived as follows.

CodedBlockPatternLuma = coded_block_pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16 (7-22)

The meaning of CodedBlockPatternChromais given in Table 7-12.

Table 7-12 — Specification of CodedBlockPatter nChroma values

CodedBlockPatternChroma | Description

0 All chromatransform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels are non-zero.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels are non-zero valued.

mb_qgp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_gp_delta shall be in the
range of -26 to +25, inclusive. mb_gp_delta shall be inferred to be equal to O when it is not present for any macroblock
(including P_Skip and B_Skip macroblock types).

The value of QPy isderived as

DRAFT ITU-T Rec. H.264 (2002 E) 73

QPY = (QPY,PREV + mb_qp_delta+ 52) % 52 (7—23)

where QPy prey IS the luma quantisation parameter, QPy, of the previous macroblock in decoding order in the current
slice. For the first macroblock in the slice QPy prey isinitially set equal to SliceQPy derived in Equation 7-16 &t the start
of each dlice.

7451 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intradx4 pred_mode flag[lumadx4Blkldx] and rem_intradx4 pred_mode] lumadx4Blkldx] specify the
Intra_4x4 prediction of the 4x4 luma block with index lumadx4BIkldx = 0..15.

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma whenever any part of the luma
macroblock is intra coded, as shown in Table 7-13.

Table 7-13 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertica
3 Plane

ref_idx_|O[mbPartldx] when present, specifiesthe index in list O of the reference picture to be used for prediction.

Therange of ref_idx_I0[mbPartldx], the index in list O of the reference picture, and, if applicable, the parity of the field
within the reference picture used for prediction are specified as follows.

- If MbaffFrameFlag is equal to 0 or mb_field decoding_flag is equal to O, the value of ref_idx_I0[mbPartldx] shall
bein the range of 0 to num_ref_idx_|0_active_ minusl, inclusive.

- Otherwise (MbaffFrameFlag is equal tol and mb field decoding flag is equa tol), the vaue of
ref_idx_|O] mbPartldx] shall bein the range of 0to 2 * num_ref_idx_I0_active minusl + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref _idx_|0[mbPartldx] shall be inferred to be
equal to 0.

ref_idx_|1] mbPartldx] has the same semantics as ref_idx_10, with 10 and list O replaced by |1 and list 1, respectively.

mvd_10[mbPartldx][0][compldx] specifies the difference between a vector component to be used and its prediction.
The index mbPartldx specifies to which macroblock partition mvd_10 is assigned. The partitioning of the macroblock is
specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is
assigned Compldx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
Compldx = 1. The range of the components of mvd_I0[mbPartldx][0][compldx] is specified by constraints on the
motion vector variable values derived from it as specified in Annex A.

mvd_11[mbPartldx][O][compldx] has the same semantics as mvd |0, with 10 and LO replaced by |1 and L1,
respectively.

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, SP, and B slices. Each table presents the
value of sub_mb_type, the name of sub_mb_type, the number of sub-macroblock partitions used (given by the
NumSubMbPart(sub_mb_type) function), and the prediction mode of the sub-macroblock (given by the
SubMbPredMode(sub_mb_type) function). In the text, the value of sub mb type may be referred to by “sub-
macroblock type’. In the text, the value of SubMbPredMode() may be referred to by “sub-macroblock prediction
mode”.

The sub-macroblock types for P macroblock types are specified in Table 7-14.

74 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 7-14 — Sub-macroblock typesin P macroblocks

x x x x X x
© © © © © ©
= z T L £ Ex
IS 3 5 ® B 5 ® S 3
o a ga sa =0 T 0
o 52 roltel e} =0 T o
£ SE SE BE TE T E
T Ew S i 8o 8o
o Q A< o o9 S 2
> Z > > > > >
= = E= =7 =7 =7
o) a S o 20 20 Iolo)
g E ZE @ E 3 E B E,
Keo) o} Qo Qo Qo Qo
3 3 3 3 3 3
0 P LO 88 1 Pred_LO

1 P LO 8x4 2 Pred LO 8 4
2 P LO 4x8 2 Pred LO 4 8
3 P LO 4x4 4 Pred_LO 4 4

The following semantics are assigned to the sub-macroblock typesin Table 7-14.

— P_LO _8x8: the samples of the sub-macroblock are predicted with one luma sub-macroblock partition of size 8x8
luma samples and associated chroma samples.

— P_LO _LO_MxN, with MxN being replaced by 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using two luma partitions of size MxN egual to 8x4, or two luma partitions of size MxN equal to 4x8, or four luma
partitions of size MxN equal to 4x4, and associated chroma samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-14.

— Direct: specifies that no motion vector differences or reference indices are present for the sub-macroblock (in case
of B_Direct_8x8) in the bitstream. Direct is an Inter macroblock prediction mode.

— Pred LO: see semantics for Table 7-10.
— Pred_L1: see semanticsfor Table 7-11.
— BiPred: see semanticsfor Table 7-11.

The sub-macroblock types for B macroblock types are specified in Table 7-15.

DRAFT ITU-T Rec. H.264 (2002 E) 75

Table 7-15 — Sub-macr oblock typesin B macroblocks

x x x x x x
© © © o © ©
= = =T L £z ez
3 3 5 ® B8® 5 @ S @
a a ga =0 Z 0 T 0o
o 58 rolt=} o =9 TS
€ SE SE BE TE T E
T £ 5w LT v | 8w
o q ooy o9 o2 52
> Z > > > > >
= = £ 7 29 A A
Qo Qo S Q o Q Qo o
E g ZE @ E A E 3 E,
Qo Ko} Qo Qo Qo Qo
3 3 ? 3 3 3
B_Direct_8x8 na Direct 4 4
1 B _LO 8x8 1 Pred LO 8 8
2 B L1 8x8 1 Pred L1 8 8
3 B_Bi_8x8 1 BiPred 8 8
4 B _LO 8x4 2 Pred LO 8 4
5 B _LO 4x8 2 Pred LO 4 8
6 B L1 8x4 2 Pred_L1 8 4
7 B L1 4x8 2 Pred L1 4 8
8 B_Bi_8x4 2 BiPred 8 4
9 B_Bi_4x8 2 BiPred 4 8
10 B _LO 4x4 4 Pred LO 4 4
11 B L1 4x4 4 Pred L1 4 4
12 B_Bi_4x4 4 BiPred 4 4

The following semantics are assigned to the macroblock typesin Table 7-15:

— B_Direct_8x8: no motion vector differences or reference indices are present for the sub-macroblock in the
bitstream. The functions SubMbPartWidth(B_Direct 8x8) and SubMbPartHeight(B_Direct 8x8) are used in the
derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

— B_X_MxN, with X being replaced by LO, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-macroblock
are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-macroblock are
predicted using four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively. All
sub-macroblock partitions share the same reference index. For an MxN sub-macroblock partition in a sub-
macroblock with sub_mb_type being B_X_MxN with X being replaced by either LO or L1, one motion vector
difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock with sub_mb_type
being B_Bi_MxN, two motion vector difference are present in the bitstream.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-15.
— Direct: see semantics for Table 7-11.

Pred_LO: see semantics for Table 7-10.

Pred L1: see semanticsfor Table 7-11.

BiPred: see semantics for Table 7-11.

ref_idx_|O[mbPartldx] has the same semantics as ref_idx_10 in subclause 7.4.5.1.

76 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

ref_idx_|1[mbPartldx] has the same semantics as ref_idx_11 in subclause 7.4.5.1.

mvd_|0[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd_l0 in subclause 7.4.5.1, except that it
is applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify to
which macroblock partition and sub-macroblock partition mvd_I0 is assigned.

mvd_I1[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd_11 in subclause 7.4.5.1.

7453 Residual data semantics
The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows.

- If entropy_coding_mode flag is equal to O, residual_block is set equal to residual_block_cavlc, which is used for
parsing the syntax elements for transform coefficient levels.

- Otherwise (entropy_coding_mode flag is equal to 1), residual_block is set equal to residual_block_cabac, which is
used for parsing the syntax elements for transform coefficient levels.

Depending on mb_type, luma or chroma, the syntax structure residual_block(coeffLevel, maxNumCoeff) is used with
the arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual_block(), and maxNumCoeff as follows.

- Depending on MbPartPredMode(mb_type, 0), the following applies.

- If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the
list Intral6x16DCLevel and into the 16 lists Intral6x16ACLevel[i]. Intraléx16DCLevel contains the 16
transform coefficient levels of the DC transform coefficient levels for each 4x4 lumablock. For each of the 16
4x4 luma blocks indexed by i = 0..15, the 15 AC transform coefficients levels of the i-th block are parsed into
thei-th list Intral6x16ACLevel[i].

- Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), for each of the 16 4x4 luma blocks
indexed by i = 0..15, the 16 transform coefficient levels of the i-th block are parsed into the i-th list
LumaLevel[i].

- For each chroma component, indexed by iCbCr = 0..1, the 4 DC transform coefficient levels of the 4x4 chroma
blocks are parsed into iChCr-th list ChromaDCLevel[iCbCr].

- For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3, of each chroma component, indexed by iCbCr = 0..1, the
15 AC transform coefficient levels are parsed into the i4x4-th list of the iCbCr-th chroma component
ChromaACLevel[iChCr][i4x4].

7.4.5.3.1 Residual block CAVLC semantics

The function Total Coeff(coeff token) that is used in subclause 7.3.5.3.1 returns the number of non-zero transform
coefficient levels derived from coeff_token.

The function TrailingOnes(coeff_token) that is used in subclause 7.3.5.3.1 returns the trailing ones derived from
coeff_token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff_token is specified in subclause 9.2.1.

trailing_ones sign_flag specifies the sign of atrailing one transform coefficient level as follows.
- If trailing_ones sign flag isequal to O, the corresponding transform coefficient level is decoded as +1.
- Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as -1.

level_prefix and level _suffix specify the value of a non-zero transform coefficient level. The range of level_prefix and
level_suffix is specified in subclause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total_zerosis specified
in subclause 9.2.3.

run_befor e specifies the number of consecutive transform coefficient levels in the scan with zero value before a non-
zero valued transform coefficient level. The range of run_beforeis specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

DRAFT ITU-T Rec. H.264 (2002 E) 77

7.4.5.3.2 Residual block CABAC semantics

coded_block_flag specifies whether the block contains non-zero transform coefficient levels as follows.

- If coded_block_flag isequal to O, the block contains no non-zero transform coefficient levels.

- Otherwise (coded block flagisequal to 1), the block contains at least one non-zero transform coefficient level.
significant_coeff flag[i] specifies whether the transform coefficient level at scanning position i is non-zero as follows.
- If significant_coeff_flag[i] isequal to O, the transform coefficient level at scanning positionii is set equal to O;

- Otherwise (significant_coeff_flag[i] is equa to 1), the transform coefficient level at scanning position i has a non-
zero value.

last_significant_coeff_flag[i] specifies for the scanning position i whether there are non-zero transform coefficient
levels for subsequent scanning positionsi + 1 to maxNumCoeff — 1 as follows.

- If last_significant_coeff _flag[i] is equal to 1, al following transform coefficient levels (in scanning order) of the
block have value equal to O..

- Otherwise (last_significant_coeff flag[i] isequal to 0), there are further non-zero transform coefficient levels along
the scanning path.

coeff_abs level minusl[i] is the absolute value of a transform coefficient level minus 1. The value of
coeff_abs level_minusl is constrained by the limits in subclause 8.5.

coeff_sign_flag[i] specifiesthe sign of atransform coefficient level asfollows.
- If coeff_sign_flag isequal to 0, the corresponding transform coefficient level has a positive value.
- Otherwise (coeff_sign flagisequal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8 Decoding process
Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).
This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process reguirements of
this Recommendation | International Standard.

Each picture referred to in this clause is a primary picture. Each dlice referred to in this clause is a dlice of a primary
picture. Each dlice data partition referred to in this clause is a slice data partition of a primary picture.

An overview of the decoding process s given as follows.
- Thedecoding of NAL unitsis specified in subclause 8.1.
- The processesin subclause 8.2 specify decoding processes using syntax elements in the slice layer and above.

- Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be
invoked for one dice of apicture)

- Variables and functions relating to the macroblock to slice group map are derived in subclause 8.2.2. (only
needed to be invoked for one dlice of a picture)

- The method of combining the various partitions when dlice data partitioning is used is described in subclause
8.2.3.

- Prior to decoding each dlice, the derivation of reference picture lists as described in 8.2.4 is necessary for inter
prediction.

- When the current picture is a reference picture and after al slices of the current picture have been decoded, the
decoded reference picture marking process in subclause 8.2.5 specifies how the current picture is used in the
decoding process of inter prediction in later decoded pictures.

- The processes in subclauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

78 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- Theintra prediction process for | and SI macroblocks except for |_PCM macroblocks as specified in subclause
8.3 provides the intra prediction samples being the output. For | PCM macroblocks subclause 8.3 directly
specifies a picture construction process. The output are the constructed samples prior to the deblocking filter
process.

- Theinter prediction process for P and B macroblocks is specified in subclause 8.4 with inter prediction samples
being the output.

- The decoding process transform coefficient and picture construction prior to deblocking filter process are
specified in subclause 8.5. The transform coefficient decoding process derives the residual samples for | and B
macroblocks as well as for P macroblocks in P dices. The output are the constructed samples prior to the
deblocking filter process.

- The decoding process for transform coefficients and picture construction prior to deblocking for P macroblocks
in SP dlices or SI macroblocks is specified in subclause 8.6. The output are the constructed samples prior to the
deblocking filter process.

- The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the decoded
samples.

8.1 NAL unit decoding process
Inputs to this process are NAL units.
Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Subclauses 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_typeequal to 1, 2, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_typeequal to 1 and 2.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 and 3to 5.

Subclause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_typeequal to1and 3to5.

Subclause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_typeequal to 1to 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding processis specified for NAL units with nal_unit_type equal to 6, 9, 10, 11, and 12.

8.2 Slice decoding process

8.21 Decoding processfor picture order count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
subclauses 8.2.4.2.3 and 8.2.4.2.4), to represent picture order differences between frames or fields for motion vector
derivation in temporal direct mode (see subclause 8.4.1.2.3), for implicit mode weighted prediction in B dlices (see
subclause 8.4.2.3.2), and for decoder conformance checking (see subclause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

DRAFT ITU-T Rec. H.264 (2002 E) 79

- Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for itstop field and bottom field, respectively.

- Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

- Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control_operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory management control operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set equal
to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equa to
TopFieldOrderCnt - tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt - tempPicOrderCnt.

The bitstream shall not contain data that results in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to O for a
coded IDR frame, TopFieldOrderCnt not equal to O for a coded IDR top field, or BottomFieldOrderCnt not equal to O for
a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to O for the
fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies.

- Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of picturesincluding all of the following

- thefirst picturein thelist isthe previous picture of any of the following types
- an|DR picture
- apicture containing amemory_management_control_operation equal to 5

- all other pictures that follow in decoding order after the first picture in the list and precede through the current
picture which isalso included in listD prior to the invoking of the decoded reference picture marking process.

- Consider thelist variable listO which contains the elements of listD sorted in ascending order. listO shall not contain
any of the following.

- aypair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are not at
consecutive positionsin listO.

- aTopFieldOrderCnt that has a value equal to another TopFieldOrderCnt.
- aBottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt.

- a BottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt and
TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that resultsin values of TopFieldOrderCnt, BottomFieldOrderCnt, PicOrderCntMsb,
or FrameNumOffset used in the decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that exceed the range of
values from -2* to 2*-1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX isaframe or acomplementary field pair)

PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field
pair picX
elseif(picX isatopfield)

PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1
elseif(picX isabottom field)

PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:
DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) - PicOrderCnt(picB) (8-2)

The bitstream shall contain data that results in values of DiffPicOrderCnt(picA, picB) used in the decoding process that
arein therange of -2° to 2% - 1, inclusive.

80 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

NOTE — Let X be the current picture and Y and Z be two other picturesin the same sequence, Y and Z are considered to be in the
same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.

NOTE — Many applications assign PicOrderCnt(X) proportiona to the sampling time of the picture X relative to the sampling
time of an IDR picture.

When the current picture includes a memory_management_control _operation equal to 5, PicOrderCnt(CurrPic) shall be
greater than PicOrderCnt(any other picturein listD).

8.2.1.1 Decoding processfor pictureorder count type0
This processisinvoked when pic_order_cnt_typeisequal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this
subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.
The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows.

- If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

- Otherwise, if the current pictureis not an IDR picture and the previous decoded picture in decoding order included a
memory_management_control_operation equal to 5 and the previous coded picture in decoding order is not a bottom
field, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt
for the previous picture.

- Otherwisg, if the current picture is not an IDR picture and the previous decoded picture in decoding order included a
memory_management_control_operation equal to 5 and the previous coded picture in decoding order is a bottom
field, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntL sb is set equal to O.

- Otherwise (the current picture is not an IDR picture and the previous decoded picture in decoding order did not
include a memory_management_control_operation equal to 5), prevPicOrderCntMsb is set equal to
PicOrderCntMsb of the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the
value of pic_order_cnt_lsb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as follows:

if((pic_order_cnt_Isb < prevPicOrderCntLsb) &&

((prevPicOrderCntLsb — pic_order_cnt_Isb) >= (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntL sb (8-3)
elseif((pic_order_cnt_Isb > prevPicOrderCntLsb) &&

((pic_order_cnt_Isb —prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntL sb
else

PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as follows:

if(!field_pic_flag || !'bottom _field_flag)
TopFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_Isb (8-4)

When the current picture is not atop field, BottomFieldOrderCnt is derived as follows:

if(!field_pic_flag)
BottomFieldOrderCnt = TopFieldOrderCnt + delta._pic_order_cnt_bottom
elseif(bottom_field flag) (8-5)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_Isb
8.2.1.2 Decoding processfor pictureorder count type 1
This processis invoked when pic_order_cnt_typeisequal to 1.
Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The vaues of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this subclause. Let
prevFrameNum be equal to the frame_num of the previous picture in decoding order.

DRAFT ITU-T Rec. H.264 (2002 E) 81

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

- If the previous picture in decoding order included a memory _management control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

- Otherwise (the previous picture in decoding order did not include a memory_management_control _operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture.

The derivation proceeds in the following ordered steps.

1. Thevariable FrameNumOffset is derived as follows:

if(nal_unit_type == 5)
FrameNumOffset = 0

else if(prevFrameNum > frame_num) (8-6)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum

else
FrameNumOffset = prevFrameNumOffset

2. Thevariable absFrameNum is derived as follows:

if(num_ref_frames_ in_pic_order_cnt_cycle != 0)
absFrameNum = FrameNumOffset + frame_num

else (8-7)
absFrameNum =0

if(nal_ref idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

3. When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as follows:

if(absFrameNum > 0) {
picOrderCntCycleCnt = (absFrameNum — 1) / num_ref_frames in_pic_order_cnt_cycle
frameNumInPicOrderCntCycle = (absFrameNum — 1) % num_ref frames in_pic_order_cnt_cycle (8-8)

}
4. The variable expectedDeltaPerPicOrderCntCycle is derived as follows:

expectedDeltaPerPicOrderCntCycle =0
for(i =0; i <num_ref frames in_pic_order_cnt_cycle; i++)
expectedDeltaPerPicOrderCntCycle += offset_for_ref frame[i] (8-9

5. Thevariable expectedPicOrderCnt is derived as follows:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * expectedDeltaPerPicOrderCntCycle
for(i =0; i <= frameNumlnPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset_for_ref frame[i |

} else
expectedPicOrderCnt = 0
if(na_ref _idc == 0) (8-10)

expectedPicOrderCnt = expectedPicOrderCnt + offset_for_non_ref pic
6. Thevariables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field_pic_flag) {

TopFieldOrderCnt = expectedPicOrderCnt + delta pic_order_cnt[0]

BottomFieldOrderCnt = TopFieldOrderCnt +

offset_for_top_to_bottom_ field + delta pic_order_cnt[1] (8-11)

} elseif('bottom field flag)

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[0]
else

BottomFieldOrderCnt = expectedPicOrderCnt + offset_for_top_to bottom field + delta pic_order_cnt[0]

8.2.1.3 Decoding processfor pictureorder count type 2

This processis invoked when pic_order_cnt_typeisequal to 2.

82 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.
Let prevFrameNum be equal to the frame_num of the previous picture in decoding order.
When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

- If the previous picture in decoding order included a memory management control operation equa to 5,
prevFrameNumOffset is set equal to O.

- Otherwise (the previous picture in decoding order did not include a memory_management_control _operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture.

The variable FrameNumOffset is derived as follows.

if(nal_unit_type == 5)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-12)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as follows:

if(nal_unit type == 5)
tempPicOrderCnt =0

elseif(na_ref_idc == 0) (8-13)
tempPicOrderCnt = 2 * (FrameNumOffset + frame_num) —1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame_num)
The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field_pic_flag) {

TopFieldOrderCnt = tempPicOrderCnt

BottomFieldOrderCnt = tempPicOrderCnt (8-14)
} elseif(bottom field flag)

BottomFieldOrderCnt = tempPicOrderCnt
else

TopFieldOrderCnt = tempPicOrderCnt

NOTE — Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures that
would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these pictures
having the same value of BottomFieldOrderCnt.

NOTE —Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding process for macroblock to slice group map
Inputs to this process are the active picture parameter set and the slice header of the dlice to be decoded.
Output of this processis a macraoblock to slice group map MbToSliceGroupMap.

This processisinvoked at the start of every dlice.
NOTE — The output of this processis equal for all slices of a picture.

When num_slice_groups minusl isequal to 1 and slice_group_map _typeisequal to 3, 4, or 5, slice groups 0 and 1 have
a size and shape determined by dlice group_change direction_flag as shown in Table 8-1 and specified in subclauses
8.2.2.4-8.2.2.6.

Table 8-1 — Refined slice group map type

dice group_map_type slice_group_change direction_flag | refined slice group map type
3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wiperight

DRAFT I TU-T Rec. H.264 (2002 E) 83

5 1 | Wipe left

In such a case, MapUnitsinSliceGroupO slice group map units in the specified growth order are alocated for slice group
0 and the remaining PicSizelnMapUnits — MapUnitslnSliceGroupO slice group map units of the picture are allocated for
slice group 1.

When num_slice groups minusl is equal tol and slice group_map type is equal to4 or 5, the variable
sizeOfUpperL eftGroup is defined as follows:

sizeOfUpperL eftGroup = (slice_group_change _direction_flag ?
(PicSizelnMapUnits — MapUnitsinSliceGroup0) : MapUnitsinSliceGroup0) (8-15)

The variable mapUnitToSliceGroupMap is derived as follows.

- If num_slice_groups minusl is equal to O, the map unit to slice group map is generated for al i ranging from O to
PicSizelnMapUnits— 1, inclusive, as specified by:

mapUnitToSliceGroupMap[i]=0 (8-16)

- Otherwise (num_slice _groups minusl is not equal to 0), mapUnitToSliceGroupMap is derived as follows.

— If dice group map _type is equa to 0, the derivation of mapUnitToSliceGroupMap as specified in
subclause 8.2.2.1 applies.

— Otherwise, if dlice_group_map_type is equal to 1, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.2 applies.

— Otherwise, if dlice_group_map_type is equal to 2, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.3 applies.

— Otherwise, if dlice group_map type is equal to 3, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.4 applies.

— Otherwise, if dice _group_map type is equal to4, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.5 applies.

— Otherwise, if dlice_group_map_type is equal to5, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.6 applies.

— Otherwise (sice_group_map_typeis equal to 6), the derivation of mapUnitToSliceGroupMap as specified
in subclause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in subclause 8.2.2.8 is invoked to convert the
map unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap.
After derivation of the macroblock to slice group map as specified in subclause 8.2.2.8, the function NextMbAddress(n)
is defined as the value of the variable nextMbAddress derived as specified by:

i=n+1
while(i < PicSizelnMbs && MbToSliceGroupMap[i] !'= MbToSliceGroupMap[n])
i++;
nextMbAddress =i (8-17)
8.22.1 Specification for interleaved dlice group map type
The specificationsin this subclause apply when slice_group_map_type isequal to 0.
The map unit to slice group map is generated as specified by:
i=0
do
for(iGroup = 0; iGroup <= num_slice_groups_minusl & & i < PicSizelnMapUnits;
i +=run_length_minusl[iGroup++] + 1)
for(j =0;j <=run_length_minusl iGroup] && i +j < PicSizelnMapUnits; j++)
mapUnitToSliceGroupMap[i +j] =iGroup (8-18)
while(i < PicSizelnMapUnits)
8.2.2.2 Specification for dispersed slice group map type
The specificationsin this subclause apply when slice_group_map_typeisequal to 1.

84 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
The map unit to slice group map is generated as specified by:

for(i =0; i < PicSizelnMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((i % PicWidthinMbs) +
(((i/PicWidthinMbs) * (num_slice groups minusl+1))/2))
% (num_slice_groups_minusl + 1) (8-19)

8.2.2.3 Specification for foreground with left-over slice group map type
The specificationsin this subclause apply when slice_group_map_type isequal to 2.
The map unit to slice group map is generated as specified by:

for(i =0;i < PicSizelnMapUnits; i++)

mapUnitToSliceGroupMap[i] = hum_slice_groups minusl
for(iGroup = num_glice_groups_minusl — 1; iGroup >= 0; iGroup--) {

yTopLeft =top_left[iGroup] / PicWidthinMbs

xTopLeft =top_left[iGroup] % PicWidthinMbs

yBottomRight = bottom_right[iGroup] / PicWidthinMbs

xBottomRight = bottom_right[iGroup] % PicWidthinMbs

for(y = yTopLeft; y <= yBottomRight; y++)

for(x = XTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap[y * PicWidthinMbs + x] = iGroup (8-20)

}

After application of the process specified in Equation 8-20, there shall be at least one value of i from O to

PicSizelnMapUnits — 1, inclusive, for which mapUnitToSliceGroupMap[i] is equal to iGroup for each value of iGroup

from 0 to num_slice_groups _minusl, inclusive (i.e., each slice group shall contain at least one slice group map unit).
NOTE — The rectangles may overlap. Slice group O contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice_groups minusl
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for
any dlice group having a smaller slice group ID. The slice group with slice group ID equal to num_glice_groups_minusl contains
the macroblocks that are not in the other slice groups.

8.2.2.4 Specification for box-out dlice group map types
The specificationsin this subclause apply when slice_group_map_typeisequal to 3.
The map unit to slice group map is generated as specified by:

for(i =0;i < PicSizelnMapUnits; i++)
mapUnitToSliceGroupMap[i] =1
x = (PicWidthinMbs — slice_group_change direction flag) /2
y = (PicHeightinMapUnits — slice_group_change direction flag) /2
(leftBound, topBound) = (X, y)
(rightBound, bottomBound) = (X,y)
(xDir, yDir) = (dlice_group_change direction_flag— 1, slice_group_change direction_flag)
for(k = 0; k < MapUnitsinSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthinMbs+x] == 1)
if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthinMbs+ x] =0 (8-21)
if(xDir == -1 && x == leftBound) {
leftBound = Max(leftBound -1, 0)
x = leftBound
(xDir, yDir) = (0, 2* dlice_group_change direction_flag—1)
} elseif(xDir == 1 && x == rightBound) {
rightBound = Min(rightBound + 1, PicWidthinMbs—1)
X = rightBound
(xDir, yDir) =(0,1-2* dice_group_change direction_flag)

} dseif(yDir == -1 && y == topBound) {
topBound = Max(topBound —1, 0)
y = topBound

(xDir, yDir) = (1-2* dice_group_change direction flag, 0)

} dseif(yDir == 1 && y == bottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightinMapUnits—1)
y = bottomBound

DRAFT I TU-T Rec. H.264 (2002 E) 85

(xDir, yDir) = (2* dlice_group_change _direction_flag—1, 0)
} dse
(X,y)=(x+xDir,y +yDir)
}

8.2.2.5 Specification for raster scan slice group map types
The specificationsin this subclause apply when slice_group_map_type is equal to 4.
The map unit to slice group map is generated as specified by:

for(i =0;i < PicSizelnMapUnits; i++)
if(i <sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap[i] = slice_group_change direction_flag
else (8-22)
mapUnitToSliceGroupMap[i] = 1 —dlice_group _change direction_flag
8.2.2.6 Specification for wipe slice group map types
The specificationsin this subclause apply when slice_group_map_typeisequal to 5.
The map unit to slice group map is generated as specified by:

k=0;
for(j = 0; j < PicwWidthinMbs; j++)
for(i =0; i < PicHeightinMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap[i * PicwWidthinMbs + j] = dlice_group_change _direction_flag
else (8-23)
mapUnitToSliceGroupMap[i * PicWidthinMbs +j] =1 —dlice_group _change direction flag
8.2.2.7 Specification for explicit slice group map type
The specifications in this subclause apply when slice_group_map_typeis equal to 6.
The map unit to slice group map is generated as specified by:
mapUnitToSliceGroupMap[i | = slice_group_id[i] (8-24)
for al i ranging from 0 to PicSizelnMapUnits— 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from O to PicSizelnMbs — 1, inclusive, the macroblock to slice group map is specified as
follows.

— If frame_mbs only flagisequal to 1 or field_pic flagisequa to 1, the macroblock to slice group map is specified
by:

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap] i | (8-25)
— Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by:
MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[i/2] (8-26)

— Otherwise (frame_mbs only flag isequal to 0 and mb_adaptive frame field flagisequal to 0 and field pic flagis
equal to 0), the macrablock to slice group map is specified by:

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[(i / (2* PicWidthinMbs)) * PicwWidthinMbs
+ (i % PicwidthinMbs)] (8-27)
8.2.3 Decoding processfor dlice data partitioning

Inputs to this process are
— adlicedata partition A layer RBSP,

— when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the same
dlice_id asin the dlice data partition A layer RBSP, and

86 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

— when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the same
dlice_id asin the slice data partition A layer RBSP.

NOTE — The dlice data partition B layer RBSP and slice data partition C layer RBSP need not be present.
Output of this processis a coded dice.

When slice data partitioning is not used, coded dlices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in subclause 7.3) of the macroblock data for the macroblocks of the dlice.

When dlice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained in
separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2. Partition
B, when present, contains a slice data partition B header and all syntax elements of category 3. Partition C, when
present, contains a slice data partition C header and all syntax elements of category 4.

When dlice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP by
extracting each syntax element from the slice data partition in which the syntax element appears depending on the dlice
data partition assignment in the syntax tables in subclause 7.3.
NOTE - Syntax elements of category 3 are relevant to the decoding of residua data of | and SI macroblock types. Syntax
elements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
dice data partition A header contains al the syntax elements of the slice header, and additionally a slice_id that are used to
associate the dice data partitions B and C with the dlice data partition A. The dlice data partition B and C headers contain the
dlice_id syntax element that establishes their association with the sice data partition A of the dice.

8.2.4 Decoding processfor reference picturelists construction
This process isinvoked at the beginning of decoding of each P, SP, or B dlice.

Outputs of this process are a reference picture list RefPicListO and, when decoding a B dlice, a second reference picture
list RefPicListl.

Decoded reference pictures are marked as "used for short-term reference” or "used for long-term reference” as specified
by the bitstream and specified in subclause 8.2.5. Short-term decoded reference pictures are identified by the value of
frame_num. Long-term decoded reference pictures are assigned a long-term frame index as specified by the bitstream
and specified in subclause 8.2.5.

Subclause 8.2.4.1 specifies

- the assignment of variables FrameNum and FrameNumWrap to each of the short-term reference frames,
- the assignment of variable PicNum to each of the short-term reference pictures, and

- theassignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into alist of variables PicNum and LongTermPicNum, which is called a reference picture list. When decoding a P
or SP dlice, there is a single reference picture list RefPicList0. When decoding a B dlice, there is a second independent
reference picture list RefPicListl in addition to RefPicListO.

Let LongTermEntry(RefPicListX[i]) for an entry RefPicListX[i] at index i in reference picture list X where X is 0
or 1 be specified as equal to 1 when RefPicListX[i] is associated with a LongTermPicNum (for a long-term reference
picture) and be specified as equal to 0 when the entry is associated with a PicNum (for a short-term reference picture).

At the beginning of decoding of each slice, reference picture list RefPicListO, and for B slices RefPicListl, are derived as
follows.

- Aninitial reference picture list RefPicListO and for B slices RefPicList1 are derived as specified in subclause 8.2.4.2.

- The initial reference picture list RefPicListO and for B dlices RefPicListl are modified as specified in subclause
8.24.3.

The number of entriesin the modified reference picture list RefPicListO is num_ref_idx_|0_active_ minusl + 1, and for B
slices the number of entries in the modified reference picture list RefPicListl is num_ref _idx_I1 active minusl + 1. A
reference picture may appear at more than one index in the modified reference picture lists RefPicListO or RefPicListl.

DRAFT ITU-T Rec. H.264 (2002 E) 87

8.2.4.1 Decoding processfor picture numbers

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture listsin
subclause 8.2.4.3, and for the decoded reference picture marking process in subclause 8.2.5.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame num that has been decoded in the slice header(s) of the
corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame_num)

FrameNumWrap = FrameNum — MaxFrameNum (8-28)
else

FrameNumWrap = FrameNum

where the value of frame_num used in Equation 8-28 is the frame_num in the slice header(s) for the current picture.
To each long-term reference picture the variable LongTermFramel dx is assigned as specified in subclause 8.2.5.

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The vaues of these variables depend on the vaue of field pic flag and
bottom_field_flag for the current picture and they are set as follows.

- If field_pic_flag isequal to O, the following applies.

- For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWrap (8-29)

- For each long-term reference frame or long-term complementary reference field pair:
LongTermPicNum = LongTermFramel dx (8-30)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in subclauses
8.24.2,8.24.3, and 8.2.5.

- Otherwise (field_pic_flag is equal to 1), the following applies.
- For each short-term reference field the following applies.

- If thereference field has the same parity as the current field
PicNum = 2 * FrameNumWrap + 1 (8-31)
- Otherwise (the reference field has the opposite parity of the current field),
PicNum = 2 * FrameNumWrap (8-32)
- For each long-term reference field the following applies.
- If thereference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameldx + 1 (8-33)

- Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFramel dx (8-34)

8.2.4.2 Initialisation processfor reference picturelists
Thisinitialisation process isinvoked when decoding a P, SP, or B slice header.

Outputs of this process areinitial reference picture list RefPicListO, and when decoding a B dlice, initial reference picture
list RefPicListl.

RefPicListO and RefPicListl have initial entries of the variables PicNum and LongTermPicNum as specified in
subclauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicListO or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is greater than num_ref_idx_10_active minusl + 1 or num_ref_idx_I1 active minusl + 1, respectively,

83 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

the extra entries past position num_ref_idx_[0_active_minusl or num_ref idx_I1 active minusl are discarded from the
initial reference picture list.

When the number of entries in the initial RefPicListO or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is less than num_ref idx_10_active minusl + 1 or num_ref idx |1 active minusl + 1, respectively,
the remaining entriesin the initial reference picture list are set equal to "no reference picture'.

8.2.4.2.1 Initialisation processfor thereference picturelist for P and SP slicesin frames
Thisinitialisation processisinvoked when decoding aP or SP dicein a coded frame.
Output of this processistheinitial reference picture list RefPicListO.

The reference picture list RefPicListO is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or

complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the
frame or complementary field pair with the highest LongTermPicNum value.
NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference” with PicNum equal to 300, 302,
and 303 and two reference frames are marked as "used for long-term reference” with LongTermPicNum equal to O and 3,
theinitial index order is:

- RefPicListO[0] is set equal to PicNum = 303,

- RefPicListO[1] is set equal to PicNum = 302,

- RefPicListO[2] is set equal to PicNum = 300,

- RefPicListO[3] is set equal to LongTermPicNum = 0, and
- RefPicListO[4] isset equal to LongTermPicNum = 3.

And LongTermEntry(RefPicListO[i]) is set equal to O for i equal to 0, 1, and 2; and is set equal to 1 for i equal to 3 and
4.

8.2.4.2.2 Initialisation processfor thereference picturelist for P and SP dlicesin fields
Thisinitialisation process isinvoked when decoding a P or SP dicein a coded field.
Output of this processisinitial reference picture list RefPicListO.

When decoding afield, each field included in the reference picture list has a separate index in the list.

NOTE - When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFramelistOShortTerm and refFramelListOLongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded frames, complementary reference field pairs, non-paired
reference fields and reference frames in which a single field is marked "used for short-term reference” or "used for long-
term reference” are al considered reference frames.

- The FrameNumWorap of all frames having one or more field marked "used for short-term reference” are included in
the list of short-term reference frames refFrameListOShortTerm. When the current field is the second field (in
decoding order) of a complementary reference field pair and the first field is marked as "used for short-term
reference’, the FrameNumWrap of the current field is included in the list refFramelistOShortTerm.
refFrameListOShortTerm is ordered starting with the frame with the highest FrameNumWrap value and proceeding
through in descending order to the frame with the lowest FrameNumWrap value.

- The LongTermFrameldx of all frames having one or more field marked "used for long-term reference” are included
in the list of long-term reference frames refFramelistOLongTerm. When the current field is the second field (in
decoding order) of a complementary reference field pair and the first field is marked as "used for long-term
reference’, the LongTermFrameldx of the first field is included in the list refFrameListOLongTerm.

DRAFT I TU-T Rec. H.264 (2002 E) 89

refFrameListOLongTerm is ordered starting with the frame with the lowest LongTermFramel dx value and proceeding
through in ascending order to the frame with the highest LongTermFramel dx value.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm
given as input and the output is assigned to RefPicListO.

8.2.4.2.3 Initialisation processfor reference picturelistsfor B slicesin frames
Thisinitialisation process isinvoked when decoding a B slice in acoded frame.
Outputs of this process are the initial reference picture lists RefPicListO and RefPicListl.

For B dlices, the order of short-term reference pictures in the reference picture lists RefPicListO and RefPicList1l depends
on output order, as given by PicOrderCnt().

The reference picture list RefPicListO is ordered such that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs. It is derived as follows.

- Short-term reference frames and short-term complementary reference field pairs are ordered starting with the short-
term reference frame or complementary reference field pair frm0 with the largest value of PicOrderCnt(frm0) less
than the value of PicOrderCnt(CurrPic) and proceeding through in descending order to the short-term reference
frame or complementary reference field pair frml that has the smallest value of PicOrderCnt(frml1), and then
continuing with the short-term reference frame or complementary reference field pair frm2 with the smallest value of
PicOrderCnt(frm2) greater than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through in
ascending order to the short-term reference frame or complementary reference field pair frm3 that has the largest
value of PicOrderCnt(frm3).

- Thelong-term reference frames and long-term complementary reference field pairs are ordered starting with the long-
term reference frame or complementary reference field pair that has the lowest LongTermPicNum value and
proceeding through in ascending order to the long-term reference frame or complementary reference field pair that
has the highest LongTermPicNum value.

The reference picture list RefPicListl is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs. It is derived as follows.

- Short-term reference frames and short-term complementary reference field pairs are ordered starting with the short-
term reference frame or complementary reference field pair frm4 with the smallest value of PicOrderCnt(frm4)
greater than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through in ascending order to
the short-term reference frame or complementary reference field pair frm5 that has the largest value of
PicOrderCnt(frm5), and then continuing with the short-term reference frame or complementary reference field pair
frm6 with the largest value of PicOrderCnt(frm6) less than the value of PicOrderCnt(CurrPic) of the current frame
and proceeding through in descending order to the short-term reference frame or complementary reference field pair
frm7 that has the smallest value of PicOrderCnt(frm7).

- Long-term reference frames and long-term complementary reference field pairs are ordered starting with the long-
term reference frame or complementary reference field pair that has the lowest LongTermPicNum value and
proceeding through in ascending order to the long-term reference frame or complementary reference field pair that
has the highest LongTermPicNum value.

- When the reference picture list RefPicListl has more than one entry and RefPicListl is identica to the reference
picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE — A non-paired reference field is not used for inter prediction of frames independent of the value of MbaffFrameFlag.
8.2.4.2.4 Initialisation processfor reference picturelistsfor B dlicesin fields
Thisinitialisation process is invoked when decoding a B slice in a coded field.
Outputs of this process are the initial reference picture lists RefPicListO and RefPicListl.

When decoding afield, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicListO and RefPicListl depend on
output order, as given by PicOrderCnt().

NOTE — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding aframe at the same position in decoding order.

Three ordered lists of reference frames, refFramelListOShortTerm, refFramelList1ShortTerm and refFrameListLongTerm,
are derived as follows. For purposes of the formation of these lists of frames the term reference entry refers in the
following to decoded reference frames, complementary reference field pairs, or non-paired reference fields.

90 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- refFrameListOShortTerm is ordered starting with the reference entry fO with the largest value of PicOrderCnt(fO)
less than or equal to the value of PicOrderCnt(CurrPic) of the current field and proceeding through in descending
order to the short-term reference entry f1 that has the smallest value of PicOrderCnt(f1), and then continuing with
the reference entry 2 with the smallest value of PicOrderCnt(f2) greater than the value of PicOrderCnt(CurrPic) of
the current field and proceeding through in ascending order to the short-term reference entry f3 that has the largest
value of PicOrderCnt(f3).

NOTE - When for the current field nal_ref_idc is greater than O and the current coded field follows in decoding order a
coded field fld1 with which together it forms a complementary reference field pair after decoding, fld1 shall be included into

the list refFrameListOShortTerm using PicOrderCnt(fld1) and the ordering method described in the previous sentence shall
be applied.

- refFrameList1ShortTerm is ordered starting with the reference entry 4 with the smallest value of PicOrderCnt(f4)
greater than the value of PicOrderCnt(CurrPic) of the current field and proceeding through in ascending order to the
short-term reference entry f5 that has the largest value of PicOrderCnt(f5), and then continuing with the reference
entry f6 with the largest value of PicOrderCnt(f6) less than or equal to the value of PicOrderCnt(CurrPic) of the
current field and proceeding through in descending order to the short-term reference entry 7 that has the smallest
value of PicOrderCnt(f7).

NOTE - When for the current field nal_ref_idc is greater than O and the current coded field follows in decoding order a
coded field fld2 with which together it forms a complementary reference field pair after decoding, fld2 shall be included into

the list refFrameList1ShortTerm using PicOrderCnt(fld2) and the ordering method described in the previous sentence shall
be applied.

- refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameldx value and
proceeding through in ascending order to the reference entry having highest LongTermPicNum value.
NOTE - When the complementary field of the current picture is marked "used for long-term reference” it is included into the list

refFrameListLongTerm. A reference entry in which only one field is marked as “used for long-term reference” isincluded into the
list refFrameListLongTerm.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListLongTerm given
asinput and the output is assigned to RefPicListO.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList1ShortTerm and refFrameListLongTerm given
asinput and the output is assigned to RefPicList1.

When the reference picture list RefPicListl has more than one entry and it is identical to the reference picture list
RefPicListO, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialisation processfor reference picturelistsin fields

Inputs of this process are the reference frame lists refFramelListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

Output of this processis reference picture list RefPicListX (which may be RefPicListO or RefPicListl).

The reference picture list RefPicListX isalist ordered such that short-term reference fields have lower indices than long-
term reference fields. Given the reference frame lists refFramelListX ShortTerm and refFrameListLongTerm, it is derived
asfollows.

- Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with fields that have the same
parity as the current field. When one field of a reference frame was not decoded or is not marked as “used for short-
term reference’, the missing field is ignored and instead the next available stored reference field of the chosen parity
from the ordered list of frames refFrameListXShortTerm is inserted into RefPicListX. When there are no more short-
term reference fields of the alternate parity in the ordered list of frames refFrameListXShortTerm, the next not yet
indexed fields of the available parity are inserted into RefPicListX in the order in which they occur in the ordered list
of frames refFrameListX ShortTerm.

- Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with fields that have the same parity
as the current field. When one field of a reference frame was not decoded or is not marked as “used for long-term
reference”, the missing field isignored and instead the next available stored reference field of the chosen parity from
the ordered list of frames refFrameListLongTerm is inserted into RefPicListX. When there are no more long-term
reference fields of the alternate parity in the ordered list of frames refFrameListLongTerm, the next not yet indexed
fields of the available parity are inserted into RefPicListX in the order in which they occur in the ordered list of
frames refFrameListLongTerm.

DRAFT ITU-T Rec. H.264 (2002 E) o1

8.2.4.3 Reordering processfor referencepicturelists

Input to this process is reference picture list RefPicListO and, when decoding a B dlice, also reference picture list
RefPicListl.

Outputs of this process are a possibly modified reference picture list RefPicListO and, when decoding a B dlice, also a
possibly modified reference picture list RefPicListl.

When ref_pic_list_reordering_flag 10 isequal to 1, the following applies.
- Let refldxL O be an index into the reference picture list RefPicListO. It isinitially set equal to 0.

- The corresponding syntax elements reordering_of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

- If reordering_of _pic_nums_idc is equal to O or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with RefPicListO and refldxL 0 given asinput, and the output is assigned to RefPicListO and refldxLO.

- Otherwise, if reordering_of pic_nums _idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with RefPicListO and refldxL 0 given asinput, and the output is assigned to RefPicListO and refldxLO.

- Otherwise (reordering_of pic nums idc is equal to3), the reordering process for reference picture list
RefPicListO is finished.

When ref_pic_list_reordering_flag_I1 isequal to 1, the following applies.
- LetrefldxL1 be an index into the reference picture list RefPicListl. It isinitially set equal to 0.

- The corresponding syntax elements reordering_of pic_nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

- If reordering_of _pic_nums_idc is equal to O or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with RefPicListl and refldxL 1 given asinput, and the output is assigned to RefPicListl and refldxL 1.

- Otherwise, if reordering_of pic_nums _idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with RefPicListl and refldxL 1 given asinput, and the output is assigned to RefPicList1 and refldxL 1.

- Otherwise (reordering_of pic nums idc is equal to3), the reordering process for reference picture list
RefPicListl is finished.

8.2.4.3.1 Reordering process of reference picturelistsfor short-term pictures
Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refldxL X into thislist.

Outputs of this process are a possibly modified reference picture list RefPicListX (with X being 0 or 1) and the
incremented index refldxLX.

The variable picNumLXNoWrap is derived as follows.
- If reordering_of pic nums idcisequal to 0

if(picNumLXPred — (abs_diff_pic_num_minusl+1)<0)

picNumLXNoWrap = picNumLXPred — (abs _diff_pic_num_minusl + 1) + MaxPicNum (8-35)
else

picNumLXNoWrap = picNumLXPred — (as _diff_pic_num_minusl + 1)

- Otherwise (reordering_of pic_nums idcisequal to 1),

if(picNumLXPred + (‘abs_diff_pic_num_minusl + 1) >= MaxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minusl + 1) — MaxPicNum (8-36)
else

picNumLXNoWrap = picNumL XPred + (abs_diff_pic_num minusl + 1)

picNumL X Pred is the prediction value for the variable picNumL XNoWrap. When the process specified in this subclause
isinvoked the first time for a slice (that is, for the first occurrence of reordering_of _pic_nums_idc equal to O or 1 in the
ref_pic_list_reordering() syntax), picNumLOPred and picNumL 1Pred are initially set equal to CurrPicNum. After each
assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to picNumL X Pred.

The variable picNumL X is derived as follows

if (picNumLXNoWrap > CurrPicNum)
picNumLX = picNumLXNoWrap — MaxPicNum (8-37)

92 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

else
picNumLX = picNumLXNoWrap

picNumLX shall specify a reference picture that is marked as “used for short-term reference” and shall not specify a
short-term reference picture that is marked as "non-existing".

The following procedure shall then be conducted to place the picture with short-term picture number picNumLX into the
index position refldxL X, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx = num_ref _idx_IX_ active_ minusl + 1; cldx > refldxLX; cldx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = picNumLX
nldx = refldxL X
for(cldx = refldxLX; cldx <= num_ref_idx_|X_active_minusl + 1; cldx++) (8-38)
if(LongTermEntry(RefPicListX[cldx]) || RefPicListX[cldx] = picNumLX)
RefPicListX[nldx++] = RefPicListX[cldx]

NOTE — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements O through num_ref_idx_IX_active_minusl of
the list need to be retained.

8.2.4.3.2 Reordering process of reference picturelistsfor long-term pictures
Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refldxL X into thislist.

Outputs of this process are a possibly modified reference picture list RefPicListX (with X being 0 or 1) and the
incremented index refldxLX.

LongTermPicNum equa to long_term_pic_num shall specify a reference picture that is marked as "used for long-term
reference”.

The following procedure shall then be conducted to place the picture with long-term picture number long_term_pic_num
into the index position refldxL X, shift the position of any other remaining pictures to later in the list, and increment the
value of refldxLX.

for(cldx = num_ref_idx_IX_active minusl + 1; cldx > refldxLX; cldx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = LongTermPicNum (8-39)
nldx = refldxL X
for(cldx = refldxLX; cldx <= num_ref_idx_|X_active_minusl + 1; cldx++)
if('LongTermEntry(RefPicListX[cldx]) || RefPicListX[cldx] != LongTermPicNum)
RefPicListX[nldx++] = RefPicListX[cldx]

NOTE — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_IX_active minusl of
the list need to be retained.

8.25 Decoded reference picture marking process
This processisinvoked for decoded pictures when nal_ref_idcis not equal to O.

A decoded picture with nal_ref _idc not equal to O, referred to as a reference picture, is marked as “used for short-term
reference” or "used for long-term reference”. For a decoded reference frame, both of its fields are marked the same as
the frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference” is identified by its FrameNum and, when it is afield, by its parity. A picture
that is marked as "used for long-term reference” is identified by its LongTermFrameldx and, when it is a field, by its

parity.

Frames or complementary field pairs marked as “used for short-term reference” or as "used for long-term reference” can
be used as areference for inter prediction when decoding a frame until the frame, the complementary field pair, or one of
its congtituent fields is marked as “unused for reference”. A field marked as “used for short-term reference” or as "used
for long-term reference” can be used as a reference for inter prediction when decoding a field until marked as “unused
for reference”.

A picture can be marked as "unused for reference" by the dliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking process,
a customised adaptive marking operation specified in subclause 8.2.5.4.

DRAFT I TU-T Rec. H.264 (2002 E) 93

A short-term reference picture is identified for use in the decoding process by its picture number PicNum, and a long-
term reference picture is identified for use in the decoding process by its long-term picture number LongTermPicNum.
Subclause 8.2.4.1 specifies how PicNum and LongTermPicNum are cal cul ated.

8.25.1 Sequence of operationsfor decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps.

1. When frame_num of the current picture is not equal to PrevRefFrameNum and is not equal to (PrevRefFrameNum +
1) % MaxFrameNum, the decoding process for gapsin frame_num is performed according to subclause 8.2.5.2.

2. All dlices of the current picture are decoded.
3. Depending on whether the current picture is an IDR picture, the following applies.
- If the current pictureis an IDR picture, the following applies.
- All reference pictures shall be marked as "unused for reference”
- Depending on long_term_reference_flag, the following applies.

- If long_term reference flag is equa to 0, the IDR picture shal be marked as "used for short-term
reference” and MaxLongTermFrameldx shall be set equal to “no long-term frame indices”.

- Otherwise (long_term_reference flag is equal to 1), the IDR picture shall be marked as "used for long-
term reference”, the LongTermFrameldx for the IDR picture shall be set equal to0, and
MaxLongTermFramel dx shall be set equal to O.

- Otherwise (the current pictureis not an IDR picture), the following applies.
- If adaptive_ref_pic_marking_mode_flag isequal to 0, the process specified in subclause 8.2.5.3 is invoked.

- Otherwise (adaptive ref pic_marking_mode flag is equal to 1), the process specified in subclause 8.2.5.4 is
invoked.

4. When the current picture is not an IDR picture and it was not marked as "used for long-term reference” by
memory_management_control_operation equal to 6, it is marked as "used for short-term reference”.

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than num_ref_frames.

8.25.2 Decoding processfor gapsin frame _num

This process is invoked when frame num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum.
NOTE — This process can only be invoked for a conforming bitstream when gaps in_frame_num_value_allowed flag is equal

to 1. When gaps_in_frame_num_value_allowed flag is equal to 0 and frame_num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame_num pertaining to “non-existing” picturesis derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-10 except the value of frame_num for the current picture.

The decoding process shall generate and mark a frame for each of the values of frame_num pertaining to “non-existing”
pictures, in the order in which the values of UnusedShortTermFrameNum are generated by Equation 7-10, using the
“dliding window” picture marking process as specified in subclause 8.2.5.3. The generated frames shall also be marked
as “non-existing” and “used for short-term reference”. The sample values of the generated frames may be set to any
value. These generated frames which are marked as “non-existing” shall not be referred to in the inter prediction process,
shall not be referred to in the reordering commands for reference picture lists for short-term pictures (subclause
8.2.4.3.1), and shall not be referred to in the assignment process of a LongTermFrameldx to a short-term picture
(subclause 8.2.5.4.3).

NOTE - The decoding process should infer an unintentional picture loss when any of these values of frame_num pertaining to

“non-existing” picturesisreferred to in the inter prediction process, is referred to in the reordering commands for reference picture

lists for short-term pictures (subclause 8.2.4.3.1), or is referred to in the assignment process of a LongTermFrameldx to a short-

term picture (subclause 8.2.5.4.3). The decoding process should not infer an unintentional picture loss when a memory
management control operation not equal to 3 is applied to a frame marked as “non-existing”.

8.25.3 Sliding window decoded refer ence picture marking process
This processis invoked when adaptive ref pic_marking_mode flag is equal to O.
Depending on the current field, the following applies.

94 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as “used for short-term reference’, the current picture is also marked as
“used for short-term reference”.

- Otherwise, the following applies.

- Let numShortTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as “used for short-term reference”. Let numLongTerm be
the total number of reference frames, complementary reference field pairs and non-paired reference fields for
which at least one field is marked as “ used for long-term reference’”.

- When numShortTerm + numLongTerm is equal to num_ref frames, the condition that numShortTerm is greater
than 0 shall be fulfilled, and the short-term reference frame, complementary reference field pair or non-paired
reference field that has the smallest value of FrameNumWrap is marked as “unused for reference”. When it isa
frame or a complementary field pair, both of its fields are also marked as “ unused for reference’”.

8.25.4 Adaptive memory control decoded reference picture marking process
This processisinvoked when adaptive ref pic_marking_mode flagisequal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory_management_control_operation
commands, one of the processes specified in subclauses 8.2.5.4.1 t08.2.5.4.6 is invoked depending on the value of
memory_management_control_operation. The memory_management_control_operation command with value of 0
specifies the end of memory_management_control _operation commands.

Memory management control operations are applied to pictures as follows.

- If field_pic_flag is equal to O, memory_management_control_operation commands are applied to the frames or
complementary reference field pairs specified.

- Otherwise (field pic flag is equa to 1), memory_management_control_operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term picture as“ unused for reference”
This process is invoked when memory_management_control_operation is equal to 1.
Let picNumX be specified by

picNumX = CurrPicNum — (difference_of_pic_nums_minusl + 1). (8-40)

Depending on field_pic_flag the value of picNumX is used to mark a short-term picture as “unused for reference” as
follows.

- If field_pic_flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of itsfields are marked as “unused for reference”.

- Otherwise (field_pic flag is equal to 1), the short-term reference field specified by picNumX is marked as “unused
for reference”. When that reference field is part of a reference frame or a complementary reference field pair, the
frame or complementary field pair is also marked as "unused for reference”, but the marking of the other field is not
changed.

NOTE - In this case, the marking of the other field is not changed by this invocation of this process, but will be changed by
another invocation of this process, as specified in subclause 7.4.3.3.

8.2.5.4.2 Marking process of along-term picture as“unused for reference”
This processis invoked when memory_management_control_operation is equal to 2.

Depending on field_pic flag the value of LongTermPicNum is used to mark a long-term picture as “unused for
reference” asfollows.

- If field_pic_flag isequal to O, the long-term reference frame or long-term complementary reference field pair having
LongTermPicNum equal to long_term_pic_num and both of its fields are marked as “unused for reference”.

- Otherwise (field_pic flag is equal to 1), the long-term reference field specified by LongTermPicNum equa to
long_term_pic_num is marked as “unused for reference”. When that reference field is part of a reference frame or a
complementary reference field pair, the frame or complementary field pair is also marked as "unused for reference”,
but the marking of the other field is not changed.

NOTE - In this case, the marking of the other field is not changed by this invocation of this process, but will be changed by
another invocation of this process, as specified in subclause 7.4.3.3.

DRAFT I TU-T Rec. H.264 (2002 E) 95

8.2.5.4.3 Assignment process of a LongTermFramel dx to a short-term reference picture
This processis invoked when memory_management_control_operation is equal to 3.

Given the syntax element difference_of pic_nums minusl, the variable picNumX is obtained as specified in subclause
8.2.5.4.1. picNumX shall refer to aframe or complementary reference field pair or non-paired reference field marked as
"used for short-term reference” and not marked as "non-existing"”.

When LongTermFrameldx equal to long_term frame idx is already assigned to a long-term reference frame or a long-
term complementary reference field pair, that frame or complementary field pair and both of its fields are marked as
"unused for reference”. When LongTermFrameldx is already assigned to a non-paired reference field, and the field is not
the complementary field of the picture specified by picNumX, that field is marked as “ unused for reference’”.

Depending on field_pic_flag the value of LongTermFrameldx is used to mark a picture from "used for short-term
reference” to "used for long-term reference” as follows.

- If field_pic flagisequal to 0, the marking of the short-term reference frame or short-term complementary reference
field pair specified by picNumX and both of its fields are changed from "used for short-term reference” to "used for
long-term reference” and assigned LongTermFramel dx equal to long_term_frame idx.

- Otherwise (field pic flag is equa to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference” to "used for long-term reference” and assigned LongTermFramel dx
equal to long_term_frame_idx.

8.2.5.4.4 Decoding process for MaxL ongT ermFramel dx
This processis invoked when memory_management_control_operation is equal to 4.

All pictures for which LongTermFrameldx is greater than max_long_term_frame idx_plusl — 1 and that are marked as
"used for long-term reference” shall be marked as “unused for reference”.

The variable MaxLongTermFramel dx is derived as follows.

- If max_long_term_frame idx_plusl is equa to O, MaxLongTermFrameldx shall be set equal to “no long-term frame
indices’.

- Otherwise (max_long_term frame idx_plusl is greater than 0), MaxLongTermFrameldx shall be set equal to
max_long_term_frame_idx_plusl — 1.
NOTE — The memory_management_control_operation command equal to 4 can be used to mark long-term reference pictures as
“unused for reference”. The frequency of transmitting max_long_term_frame idx_plusl is not specified by this
Recommendation | International Standard. However, the encoder should send a memory_management_control_operation
command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.25.45 Marking process of all reference pictures as “unused for reference’ and setting
MaxL ongTermFramel dx to “no long-term frameindices”

This process is invoked when memory_management_control_operation is equal to 5.

All reference pictures are marked as “unused for reference” and the variable MaxLongTermFramel dx is set equal to “no
long-term frame indices’.

8.2.5.4.6 Processfor assigning along-term frameindex to the current picture
This process is invoked when memory_management_control_operation is equal to 6.

When LongTermFrameldx is already assigned to a long-term reference frame or a long-term complementary reference
field pair, that frame or complementary field pair and both of its fields are marked as "unused for reference”. When
LongTermFrameldx is aready assigned to a non-paired reference field, and the field is not the complementary field of
the current picture, that field is marked as “unused for reference”.

The current picture is marked as
long_term_frame idx.

used for long-term reference® and assigned LongTermFrameldx equal to

When field_pic flag is equal to 0, both its fields are also marked as "used for long-term reference" and assigned
LongTermFrameldx equal to long_term_frame_idx.

When field pic flag is equal to 1 and the current picture is a second (in decoding order) field of a complementary
reference field pair, the pair is also marked as "used for long-term reference” and assigned LongTermFramel dx equal to
long_term_frame idx.

96 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.3 Intra prediction process
This processisinvoked for | and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring macroblocks and
for Intra_4x4 prediction mode, the associated values of Intradx4PredM ode from neighbouring macroblocks.

Outputs of this process are specified as follows.

- If mb_typeis not equal to I_PCM, the Intra prediction samples of components of the macroblock or in case of the
Intra_4x4 prediction process for luma samples, the outputs are 4x4 luma sample arrays as part of the 16x16 luma
array of prediction samples of the macroblock.

- Otherwise (mb_typeisequal to | _PCM), constructed macroblock samples prior to the deblocking filter process.
Depending on the value of mb_type the following applies.
- If mb_typeisegual to|_PCM, the process specified in subclause 8.3.4 isinvoked.
- Otherwise (mb_typeisnot equal to |_PCM), the following applies.
- Thedecoding processes for Intra prediction modes are described for the luma component as follows.
- If the macroblock prediction modeis equal to Intra_4x4, the specification in subclause 8.3.1 applies.

- Otherwise (the macroblock prediction mode is equa to Intra_16x16), the specification in subclause 8.3.2
applies.

- The decoding processes for Intra prediction modes for the chroma components are described in subclause 8.3.3.

Samples used in the Intra prediction process shall be sample values prior to alteration by any deblocking filter operations.

8.3.1 Intra_4x4 prediction processfor luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are constructed luma samples prior to the deblocking filter process from neighbouring macroblocks
and the associated values of Intradx4PredM ode from the neighbouring macroblocks or macroblock pairs.

Outputs of this process are 4x4 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock pred, .

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 lumablock inverse scanning process as specified in subclause 6.4.3.

For the all 4x4 Iuma blocks of the luma component of a macroblock with lumadx4Blkldx = 0..15, the variable
Intradx4PredMode] lumadx4BIkldx] is derived as specified in subclause 8.3.1.1.

For the each luma block of 4x4 samplesindexed using lumadx4Blkldx = 0..15,

1. The Intra_4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4Blkldx and constructed
samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the
output are the Intra_4x4 luma prediction samples preddx4, [x, y] withx,y =0..3.

2. The position of the upper-left sample of a 4x4 luma block with index lumadx4Blkldx inside the current macroblock
is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with lumadx4Blkldx as the
input and the output being assigned to (xO, yO) and X, y = 0..3.

pred. [XO + X, yO +y] = preddx4. [X,y] (8-41)

3. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 isinvoked with pred, and lumadx4Blkldx as the input and the constructed samples for the current 4x4
lumablock S| asthe output.

8.3.1.1 Derivation processfor the Intra4x4PredM ode

Inputs to this process are the index of the 4x4 luma block lumadx4Blkldx and variable arrays Intradx4PredMode that are
previously (in decoding order) derived for adjacent macroblocks.

Output of this processis the variable Intradx4PredMode] lumadx4BIlkidx].
Table 8-2 specifies the values for Intradx4PredM ode] lumadx4Blkldx] and the associated names.

DRAFT ITU-T Rec. H.264 (2002 E) 97

Table 8-2 — Specification of Intradx4PredM ode] lumadx4Blkldx] and associated names

Intradx4PredM ode] lumadx4BIKkldx] Name of Intradx4PredM ode[lumadx4BIkidx]
0 Intra_4x4 Vertica (prediction mode)
1 Intra_4x4_Horizontal (prediction mode)
2 Intra_4x4_DC (prediction mode)
3 Intra_4x4_Diagona_Down_L eft (prediction mode)
4 Intra_4x4_Diagonal_Down_Right (prediction mode)
5 Intra_4x4 Vertical_Right (prediction mode)
6 Intra_4x4 Horizontal_Down (prediction mode)
7 Intra_4x4_Vertica_Left (prediction mode)
8 Intra_4x4 Horizontal_Up (prediction mode)

Intradx4PredM ode] lumadx4Blkldx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

v
[N

<«

Figure 8-1—Intra_4x4 prediction mode directions (infor mative)

Let intradx4PredModeA and intradx4PredModeB be variables that specify the intra prediction modes of neighbouring
4x4 luma blocks.

Intradx4PredMode] lumadx4Blkldx] is derived as follows.

- The process specified in subclause 6.4.7.3 is invoked with lumadx4Blkldx given as input and the output is assigned
to mbAddrA, lumadx4BlkldxA, mbAddrB, and lumadx4BIkldxB.

- Thevariable dcOnlyPredictionFlag is derived as follows.
- If one of the following conditions istrue, dcOnlyPredictionFlag is set equal to 1
- the macroblock with address mbAddrA is not available
- the macroblock with address mbAddrB is not available

- the macroblock with address mbAddrA is available and coded in Inter prediction mode and
constrained_intra_pred flagisequal to 1

- the macroblock with address mbAddrB is available and coded in Inter prediction mode and
constrained_intra_pred flagisegual to 1

- Otherwise, dcOnlyPredictionFlag is set equal to 0.
- For N being either replaced by A or B, the variables intradx4PredM odeN are derived as follows.

98 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- If dcOnlyPredictionFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra 4x4
macroblock prediction mode, intradx4PredModeN is set equal to 2 (Intra_4x4 DC prediction mode).

- Otherwise (dcOnlyPredictionFlag is equal to 0 and the macroblock with address mbAddrN is coded in Intra_4x4
macroblock prediction mode), intradx4PredModeN is set equal to Intradx4PredMode] lumadx4BIkIdxN],
where Intradx4PredMode is the variable array assigned to the macroblock mbAddrN.

- Intradx4PredMode] lumadx4Blkldx | is derived by applying the following procedure.

predintradx4PredM ode = Min(intradx4PredModeA, intradx4PredModeB)
if(prev_intradx4_pred_mode_flag[lumadx4BIkidx])
Intradx4PredM ode] lumadx4BIkldx] = predintradx4PredM ode
else (8-42)
if(rem_intradx4_pred_mode] lumadx4Blkldx] < predintradx4PredMode)
Intradx4PredM ode] lumadx4BIKldx] = rem_intradx4_pred_mode[lumadx4Blkidx]
else
Intradx4PredM ode] lumadx4Blkidx] = rem_intradx4 _pred mode[lumadx4Blkldx] + 1

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with prediction mode equal to Intra_4x4 followed by
the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are the index of the 4x4 luma block with index lumadx4BIkldx and constructed samples prior (in
decoding order) to the deblocking filter process from adjacent luma blocks.

Output of this process are the prediction samples pred4x4,[x, y], with x, y = 0..3 for the 4x4 luma block with index
lumadx4Blkldx.

The position of the upper-left sample of a 4x4 luma block with index lumadx4BIkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with lumadx4Blkldx as the input
and the output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1.3andx=0..7,y = -1, are derived as follows.

— Thelumalocation (XN, yN) is specified by
XN =xO + X (8-43)
yN=yO+y (8-44)
— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for luma locations with (XN, yN)
asinput and mbAddrN and (xW, yW') as output.
— Eachsamplep[x,y] withx=-1,y=-1..3andx =0..7, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[X, y] is marked as “hot available for Intra_4x4
prediction”

mbAddrN is not available,

- the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra_pred_flag is equal to 1.

- the macroblock mbAddrN has mb_type equal to Sl and constrained_intra_pred flag is equal to 1 and the
current macroblock does not have mb_type equal to Sl.

- Xisgreater than 3 and lumadx4Blkldx isequal to 3 or 11

— Otherwise, the sample p[x, y] is marked as “available for Intra_4x4 prediction” and the luma sample at luma
location (xW, yW) inside the macroblock mbAddrN isassigned to p[X, y 1.

When samples p[x, -1], with x = 4..7 are marked as " not available for Intra_4x4 prediction,” and the samplep[3,-1] is
marked as “available for Intra_4x4 prediction,” the sample value of p[3, -1] is substituted for sample values p[x, -1],
with x =4..7 and samples p[X, -1], with x = 4..7 are marked as “available for Intra_4x4 prediction”.

NOTE — Each block is assumed to be constructed into a frame prior to decoding of the next block.

Depending on Intradx4PredMode] lumadx4Blklidx], one of the Intra_4x4 prediction modes specified in subclauses
8.3.1.2.1t0 8.3.1.2.9 shall be used.

DRAFT I TU-T Rec. H.264 (2002 E) 99

8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4Blkldx] is equal to 0.

This mode shall be used only when the samples p[x,-1] with x = 0.3 are marked as “available for Intra_4x4
prediction”.

The values of the prediction samples pred4x4, [x, y], with x, y = 0..3 are derived by
preddx4 [x,y] =p[x,-1], withx,y =0..3 (8-45)

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4BIkidx] is equal to 1.

This mode shall be used only when the samples p[-1,y], with y = 0.3 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4, [x, y], with x, y = 0..3 are derived by

preddx4 [x,y]=p[-1,y], withx,y =0.3 (8-46)
8.3.1.2.3 Specification of Intra_4x4_DC prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4BIkldx] is equal to 2.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

- If dl samplesp[x,-1], withx =0..3and p[-1, y], with y = 0..3 are marked as “available for Intra_4x4 prediction”,
the values of the prediction samples preddx4, [X, y], with x, y = 0..3 are derived by

preddx4. [X, y]=(p[O,-1]+p[L, -1]+p[2,-1]+p[3,-1] +
p[-1,0]+p[-1,1]+p[-1,2]+p[-1,3] +4)>>3 (8-47)

- Otherwise, if samples p[x, -1], with x = 0..3 are marked as “not available for Intra_4x4 prediction” and p[-1,y],
with y = 0.3 are marked as “available for Intra 4x4 prediction”, the values of the prediction samples
preddx4 [x, y], with x, y = 0..3 are derived by

preddx4 [x,y]=(p[-1,0]+p[-1, 1] +p[-1,2] +p[-1,3]+2)>>2 (8-48)

- Otherwisg, if samples p[-1, y], withy = 0..3 are marked as “not available for Intra_4x4 prediction” and p[x, -1],
with x=0..3 are marked as “available for Intra 4x4 prediction”, the values of the prediction samples
preddx4,[X,y], withx, y =0 .. 3 are derived by

preddx4 [X,y 1=(p[0,-1]+p[1,-1]+p[2,-1]1+p[3,-1] +2)>>2 (8-49)

- Otherwise (all samplesp[x,-1], withx =0..3and p[-1, y], withy = 0..3 are marked as “not available for Intra_4x4
prediction™), the values of the prediction samples pred4x4, [x, y], with x, y = 0..3 are derived by

preddx4, [x,y] =128 (8-50)
NOTE — A 4x4 luma block can always be predicted using this mode.

8.3.1.2.4 Specification of Intra_4x4 Diagonal_Down_L eft prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4BIkldx] is equal to 3.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra_4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- Ifxisequal to 3andy isequal to 3,

preddx4 [X,y] =(p[6,-1]+3* p[7,-1]+2)>>2 (8-51)
- Otherwise (x isnot equal to 3 or y isnot equal to 3),

preddx4 [X, y] =(p[x+Yy,-1]+2*p[x+y+1,-1]+p[x+y+2,-1]+2)>>2 (8-52)

100 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.3.1.2.5 Specification of Intra_4x4_Diagonal_Down_Right prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4Blkidx] is equal to 4.

This mode shall be used only when the samples p[x, -1] with x = 0.3 and p[-1,y] with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- If xisgreater thany,

preddx4 [X, y] =(p[x-y-2,-1]+2* p[x-y-1,-1]+p[Xx-y,-1]+2)>>2 (8-53)
- Otherwiseif x islessthany,

preddx4 [x,y]=(p[-1L,y-x-2]+2*p[-L,y-x-1]+p[-Ly-x]+2)>>2 (8-54)
- Otherwise (x isequal toy),

preddx4 [X,y]1=(p[0,-1]+2* p[-1,-1]+p[-1,0] +2)>>2 (8-55)
8.3.1.2.6 Specification of Intra_4x4 Vertical_Right prediction mode

This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4Blkldx] is equal to 5.

This mode shall be used only when the samples p[x, -1] with x = 0.3 and p[-1,y] with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

Let the variable ZVR be set equal to 2* x —V.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- IfzVRisequal to 0, 2, 4, or 6,

predax4 [X,y] =(p[x-(y>>1)-1,-1]+p[x-(y>>1),-1]+1)>>1 (8-56)
- Otherwisg, if ZVRisequal to 1, 3, or 5,

predax4 [x,y] =(p[x-(y>>1)-2,-1]+2* p[x-(y>>1)-1,-1]+p[x-(y>>1),-1]+2)>>2 (8-57)
- Otherwise, if zZVR isequal to -1,

preddx4 [X,y]1=(p[-1,0]+2* p[-1,-1]+p[0,-1] +2) >>2 (8-58)
- Otherwise (zVR isequa to -2 or -3),

preddx4 [x,y]1=(p[-1L,y-1]+2*p[-L,y-2]+p[-L,y-3]+2)>>2 (8-59)
8.3.1.2.7 Specification of Intra_4x4 _Horizontal_Down prediction mode

This Intra_4x4 prediction mode shall be used when Intradx4PredM ode[lumadx4Blkldx] is equal to 6.

This mode shall be used only when the samples p[X, -1] with x = 0.3 and p[-1,y] with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

Let the variable zHD be set equal to 2 * y —X.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- IfzHDisequa to 0, 2, 4, or 6,

preddx4 [X, y]=(p[-Ly-(x>>1)-1]+p[-Ly-(x>1)]+1)>1 (8-60)
- Otherwisg, if zHD isequal to 1, 3, or 5,

preddx4 [X,y]1=(p[-1L,y-(x>>1)-2]+2*p[-L,y-(x>>1)-1]+p[-Ly-(x>>1)]+2)>>2(861)
- Otherwise, if zHD isequal to -1,

preddx4 [x,y]=(p[-1,0]+2* p[-1,-1]+p[0,-1] +2)>>2 (8-62)

DRAFT ITU-T Rec. H.264 (2002 E) 101

- Otherwise (zHD isequal to -2 or -3),
preddx4 [X,y]=(p[x-1,-1]+2*p[x-2,-1]+p[x-3,-1]+2)>>2 (8-63)
8.3.1.2.8 Spexification of Intra_4x4 Vertical L eft prediction mode

This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4Blkidx] isequal to 7.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra_4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- Ifyisequa toOor 2,

preddx4 [x,y] =(p[x+(y>>1),-1]+p[x+(y>1)+1,-1]+1)>>1 (8-64)
- Otherwise (y isequal to 1 or 3),

predax4 [X,y] =(p[x+(y>>1),-1]+2* p[x+(y>>1)+1L-1]+p[x+(y>>1)+2-1]+2)>>2
(8-65)
8.3.1.2.9 Specification of Intra_4x4 _Horizontal_Up prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredM ode] lumadx4BIkidx] is equal to 8.

This mode shall be used only when the samples p[-1,y] with y = 0.3 are marked as “available for Intra_4x4
prediction”.

Let thevariable zHU beset equal tox + 2 * y.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows:
- IfzHUisequa to 0, 2, or 4

preddx4 [X,y] =(p[-1,y+(x>>1)]+p[-Ly+(x>>1)+1]+1)>>1 (8-66)
- Otherwise, if zHU isequal to 1 or 3

predax4 [x,y]=(p[-Ly+(x>>1)]+2*p[-Ly+(x>>1)+1]+p[-Ly+(x>>1)+2]+2)>>2

(8-67)
- Otherwise, if zHU isequal to 5,
preddx4 [x,y]=(p[-1,2]+3*p[-1,3]+2)>>2 (8-68)
- Otherwise (zHU is greater than 5),
preddx4. [x,y]=p[-1, 3] (8-69)

8.3.2 Intra_16x16 prediction processfor luma samples

This process is invoked when the macroblock prediction mode is equal to Intra 16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

Input to this process are constructed samples prior to the deblocking process from neighbouring luma blocks (if
available).

Outputs of this process are Intra prediction luma samples for the current macroblock pred,[x, y .

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1.15and withx = 0..15, y = -1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for luma locations with (X, Yy)
assigned to (XN, yN) asinput and mbAddrN and (xW, yW) as output.

— Eachsamplep[x,y] withx=-1,y =-1..15 and with x = 0..15, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra_16x16
prediction”

102 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- mbAddrN isnot available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra_pred_flag is equal to 1.
- the macroblock mbAddrN has mb_type equal to Sl and constrained_intra_pred flagisequal to 1.

— Otherwise, the sample p[x, y] is marked as “available for Intra_16x16 prediction” and the luma sample at
lumalocation (xW, yW) inside the macroblock mbAddrN isassignedto p[X, y].

Let pred,[X, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.
Intra_16x16 prediction modes are specified in Table 8-3.

Table 8-3 — Specification of Intral6x16PredM ode and associated names

Intral6x16PredMode Name of Intral6x16PredMode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intraléx16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.2.1 to 8.3.2.4
shall be used.

8.3.21 Specification of Intra_16x16 Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x = 0..15 are marked as “available
for Intra_16x16 prediction”.

pred [X,y] =p[X,-1], withx, y =0..15 (8-70)

8.3.2.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[-1, y] with y = 0..15 are marked as “available
for Intra_16x16 prediction”.

pred [x,y]=p[-1,y], withx,y =0.15 (8-71)

8.3.23 Specification of Intra_16x16 DC prediction mode

This Intra 16x16 prediction mode shall be used depending on whether the neighbouring samples are marked as
“available for Intra_16x16 prediction” as follows.

- If dl neighbouring samples p[x', -1] and p[-1, y'] used in Equation 8-72 are marked as “available for Intra_16x16
prediction”, the prediction for all luma samplesin the macroblock is given by:

15 15)
pred [x, y1= (g p[x,- 1+ Q p[- 1,y]+16) >>5 withx,y =0..15 (8-72)
x'=0

y=0

- Otherwise, if the neighbouring samples p[X', -1] are not available and the neighbouring samples p[-1,y'] are
marked as “available for Intra_16x16 prediction”, the prediction for all luma samplesin the macroblock is given by:

15
pred [x,y] = (é p[- 1,y']+8) >> 4 withx,y =0..15 (8-73)

y=0

- Otherwisg, if the neighbouring samples p[-1, y'] are not available and the neighbouring samples p[X, -1] are
marked as “available for Intra_16x16 prediction”, the prediction for all luma samplesin the macroblock is given by:

15
pred [x, y]=(§ p[x',— 1]+8) >> 4 withx,y =0..15 (8-74)

x'=0

- Otherwise (none of the neighbouring samples p[x',-1] and p[-1, y'] are marked as “available for Intra_16x16
prediction™), the prediction for all luma samples in the macroblock is given by:

DRAFT I TU-T Rec. H.264 (2002 E) 103

pred.[x, y] =128 withx, y = 0..15 (8-75)

8.3.24 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x =-1..15and p[-1,y] withy =
0..15 are marked as “available for Intra_16x16 prediction”.

pred [X,y] = Clipl((a+b* (x-7)+c* (y-7)+16)>>5), (8-76)
where:

a=16* (p[-1,15] +p[15,-1]) (8-77)

b=(5*H+32)>>6 (8-78)

c=(5*V+32)>>6 (8-79)

and H and V are specified in Equations 8-80 and 8-81.

H=§71(X'+1)*(p[8+X',—1]—p[6-x',-1]) (8-80)
V=a (y+1)*(p[-1.8+y]-p[-16-y]) (8-81)

8.3.3 Intraprediction processfor chroma samples

This process is invoked for | and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

Inputs to this process are constructed samples prior to the deblocking process from neighbouring chroma blocks (if
available).

Outputs of this process are Intra prediction chroma samples for the current macroblock predey[X, y] and prede[X, y 1.

Both chroma blocks (Cb and Cr) of the macroblock shall use the same prediction mode. The prediction mode is applied
to each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the
remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a
replacement of the subscript Cb or Cr.

The 17 neighbouring samples p[x, y] that are constructed chroma samples prior to the deblocking filter process, with
x=-1,y=-1.7and withx =0..7, y = -1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for chroma locations with (X,y)
assigned to (XN, yN) asinput and mbAddrN and (xW, yW) as output.

— Eachsamplep[X, y] isderived asfollows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra chroma
prediction”

- mbAddrN is not available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra_pred_flag is equal to 1.

- the macroblock mbAddrN has mb_type equal to Sl and constrained _intra pred flag is equal to 1 and the
current macroblock does not have mb_type equal to Sl.

— Otherwise, the sample p[X, y] is marked as “available for Intra chroma prediction” and the chroma sample of
component C at chroma location (XW, yW) inside the macroblock mbAddrN isassignedto p[X, y 1.

Let predd[x, y] with x, y = 0..7 denote the prediction samples for the chroma block samples.

Intra chroma prediction modes are specified in Table 8-4.

104 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 8-4 — Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode
0 Intra_Chroma_DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma pred_mode, one of the Intra chroma prediction modes specified in subclauses 8.3.3.1
to 8.3.3.4 shall be used.

8.3.3.1 Specification of Intra_Chroma_DC prediction mode
The values of the prediction samples predc[x, y] withx =0..3and y = 0..3 are derived as follows.

- If the samples p[x, —1] with x = 0..3 and the samples p[-1,y] and y = 0..3 are marked as “available for Intra
chroma prediction”,

predd[x, y]—ga p[x¢ 1] ap[Lyq+4 >>3, Withx=0.3andy =0..3 (8-82)

X =0 y&=0

- Otherwise, if the samples p[x, —1] with x = 0..3 are marked as “available for Intra chroma prediction” and the
samples p[-1, y] withy = 0..3 are marked as “ not available for Intra chroma prediction”,

predg[X, y]—ga p[xtl; 1]+2 >>2,withx=0..3andy =0..3 (8-83)

ex¢=0

- Otherwise, if the samples p[X, =1] with x = 0..3 are marked as “not available for Intra chroma prediction” and the
samples p[-1, y] withy = 0..3 are marked as “available for Intra chroma prediction”,

predq[X, y]—éa p[ly0]+2 >>2,Withx=0..3andy =0..3 (8-84)

y¢=0

- Otherwise (the samples p[x, —=1] with x = 0..3 and the samples p[-1, y] with y = 0..3 are marked as “not available
for Intra chroma prediction”),

predq[X,y] =128, withx =0..3andy =0..3 (8-85)
The values of the prediction samples predc[X, y] withx =4..7 andy = 0..3 are derived as follows.

- If thesamplesp[X, -1] with x = 4..7 are marked as “available for Intra chroma prediction”,

predc x, y] = & ga p[xd; 1]+2 >>2,Wwithx=4.7andy =0..3 (8-86)

Eexe4

- Otherwise, if thesamplesp[-1, y] withy = 0..3 are marked as “available for Intra chroma prediction”,

predg[X, y]—ga p[lyﬂ]+2 >>2,Withx=4.7andy =0..3 (8-87)

Y0 a

- Otherwise (the samples p[x, —=1] with x = 4..7 and the samples p[-1, y] with y = 0..3 are marked as “not available
for Intra chroma prediction”),

prede[X,y] =128, withx =4..7andy = 0..3 (8-88)

The values of the prediction samples predc[X, y] withx =0..3andy = 4..7 are derived as follows.

- If thesamplesp[-1, y] withy = 4..7 are marked as “available for Intra chroma prediction”,

DRAFT I TU-T Rec. H.264 (2002 E) 105

predg[X, y]—ga p[ly¢]+2 >>2,Withx=0.3andy =4..7 (8-89)

y =4

- Otherwise, if the samples p[x, -1] with x = 0..3 are marked as “available for Intra chroma prediction”,

predc[X,y] = 98. p[x¢ 1]+2 >>2,Withx=0.3andy =4..7 (8-90)
Ex¢=0

- Otherwise (the samples p[x, —=1] with x = 0..3 and the samples p[-1, y] with y = 4..7 are marked as " not available
for Intra chroma prediction”),

predc[X,y] =128, withx =0.3andy = 4..7 (8-91)

The values of the prediction samples predc[x, y] withx =4..7 andy = 4..7 are derived as follows.

- If the samples p[x,—1] with x = 4..7 and the samples p[-1,y] and y = 4..7 are marked as “available for Intra
chroma prediction”,

predq[X, y]—ga p[x¢ 1] ap[Ly¢]+4 >>3,Withx=4..7andy =4..7 (8-92)

X ¢=4 y&=4

- Otherwise, if the samples p[x, —1] with x = 4..7 are marked as “available for Intra chroma prediction” and the
samples p[-1, y] withy = 4..7 are marked as “ not available for Intra chroma prediction”,

predq[X, y]—ga p[x¢ 1]+2 >>2,Withx=4.7andy =4..7 (8-93)

exe4

- Otherwise, if the samples p[x, =1] with x = 4..7 are marked as “not available for Intra chroma prediction” and the
samples p[-1, y] withy = 4..7 are marked as “available for Intra chroma prediction”,

predc[X,y] = ap[lyq]+2 >>2,WIthX 4. 7andy=4.7 (8-94)

y =4

- Otherwise (the samples p[x, —1] with x = 4..7 and the samples p[-1, y] with y = 4..7 are marked as “not available
for Intra chroma prediction”),

predc[X,y] =128, withx =4..7andy = 4..7 (8-95)

8.3.3.2 Specification of Intra_Chroma_Horizontal prediction mode

This mode shall be used only when the samples p[-1, y] with y = 0..7 are marked as “available for Intra chroma
prediction”.

The values of the prediction samples predc[X, y] are derived as follows.

predc[X,y] =p[-1,y], withx, y =0..7 (8-96)

8.3.3.3 Spexification of Intra_Chroma_Vertical prediction mode

This mode shall be used only when the samples p[x, -1] with x = 0..7 are marked as “available for Intra chroma
prediction”.

The values of the prediction samples predc[X, y] are derived as follows.
predc[X,y] =p[X, -1], withx,y =0..7 (8-97)

8.3.34 Specification of Intra_Chroma_Plane prediction mode

This mode shall be used only when the samples p[X, -1], with x = 0..7 and p[-1,y], with y = -1..7 are marked as
“available for Intra chroma prediction”.

The values of the prediction samples predc[X, y] are derived as follows.

predd] X, y] = Clipl((a+b* (x=3)+c* (y—3) +16)>>5), withx,y=0.7 (8-98)

106 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

where:
a=16* (p[-1,7]1+p[7,-1]) (8-99)
b=(17*H+16)>>5 (8-100)
c=(17*V+16)>>5 (8-101)

and H and V are specified as follows.

H=8& 6D * (pla+x - 1- pl2- .- 1) (8-102)
V=8 o+1* (- 1,4+y]- pl- 12- v (8-103)

y'=0

8.34 Sampleconstruction processfor I_PCM macroblocks

This processisinvoked when mb_typeisequal tol PCM.

Outputs of this process are constructed macroblock samples S, S, and S, prior to the deblocking filter process.
The variable dy is derived as follows.

- If MbaffFrameFlag is equal to 1 and the current macroblock is afield macroblock, dy is set equal to 2.

- Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock), dy is set equal to 1.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed samples prior to the deblocking process are generated as specified by:

for(i=0;i<256;i++)

S [xP+(i%16),yP+dy* (i/16))] =pcm_byte[i] (8-104)
for(i=0;i<64;i++){

Scol (XP>>1)+(i%8),((yP+1)>>1)+dy* (i/8)]=pcm_byte i+ 256] (8-105)

Sa[(xP>>1)+(i%8),((yP+1)>>1)+dy* (i/8)]=pcm_byte i +320]

}

8.4 Inter prediction process
This processis invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred, of luma
samples and two 8x8 arrays predc, and predc, of chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further
partitioned into sub-macroblock partitions as specified by sub_mb_type. Each sub-macroblock partition is referred to by
subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is set equal to O.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Table 7-10, Table 7-11, Table 7-14, and
Table 7-15.

The variables partWidth and partHeight are derived as follows.
- If mb_typeisnot equal to P_8x8 or P_8x8ref0 or B_8x8, the following applies.

partWidth = MbPartWidth(mb_type) (8-106)
partHeight = MbPartHeight(mb_type) (8-107)

- Otherwise (mb_typeisequal to P_8x8 or P_8x8ref0 or B_8x8),

DRAFT ITU-T Rec. H.264 (2002 E) 107

partWidth = SubM bPartWidth(sub_mb_type[mbPartldx])

partHeight = SubMbPartHeight(sub_mb_type[mbPartidx]).

(8-108)

(8-109)

When mb_typeis equal to B_Skip or B_Direct_16x16 or sub_mb_type[mbPartldx] is equal to B_Direct_8x8, the Inter
prediction process is specified for

partWidth = 4

partHeight = 4

(8-110)

(8-111)

with mbPartldx proceeding over values 0..3 and for each sub-macroblock indexed by mbPartldx, subMbPartldx proceeds
over values 0..3.

The Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx consists
of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.

Inputsto this process are

amacraoblock partition mbPartldx,

a sub-macroblock partition subMbPartl dx.

Outputs of this process are

luma motion vectors mvL0O and mvL1 and the chroma motion vectors mvCLO and mvCL 1
reference indices refldxL0 and refldxL 1
prediction list utilization flags predFlagL 0 and predFlagL 1

2. Decoding process for Inter prediction samples as specified in subclause 8.4.2.

Inputsto this process are

amacraoblock partition mbPartldx,

a sub-macroblock partition subMbPartl dx.

variables specifying partition width and height, partWidth, and partHeight

luma motion vectors mvL0 and mvL 1 and the chroma motion vectors mvCLO and mvCL 1
reference indices refldxL0 and refldxL1

prediction list utilization flags predFlagL 0 and predFlagL 1

Outputs of this process are

inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart, of prediction luma
samples and two (partWidth/2)x(partHeight/2) arrays predPartc,, and predPartc, of prediction chroma samples,

one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

108

MvLO[mbPartldx][subMbPartldx] = mvLO
MvL1[mbPartldx][subMbPartldx] = mvL1
RefldxLO[mbPartldx] = refldxLO
RefldxL1[mbPartldx] = refldxL1
PredFlagL O] mbPartldx | = predFlagL0

PredFlagL 1] mbPartldx] = predFlagL 1

DRAFT ITU-T Rec. H.264 (2002 E)

(8-112)
(8-113)
(8-114)
(8-115)
(8-116)

(8-117)

DRAFT ISO/IEC 14496-10 : 2002 (E)

The location of the upper-left sample of the partition relative to the upper-left sample of the macroblock is derived by
invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartldx as the input
and (xP, yP) as the output.

The location of the upper-left sample of the macroblock sub-partition relative to the upper-left sample of the macroblock
partition is derived by invoking the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2
with subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the partition or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

Thevariable pred [XP+ xS+ X, yP+yS+y] withx =0.. partWidth— 1,y =0 .. partHeight — 1 is derived by
pred [XP+ xS+ x,yP+yS+y] = predPart, [X,y] (8-118)

Thevariable predc[XxP/2+xS/2+x,yP/2+yS/2+y] withx=0.. partWidth/2—-1,y =0 .. partHeight/2—1, and C
being replaced by Cb or Cr is derived by

predc[XP/2+xS/2+x,yP/2+yS/2+y] =predPartc X,y] (8-119)

8.4.1 Derivation processfor motion vector components and reference indices

Inputsto this process are

- amacroblock partition mbPartldx,

- asub-macroblock partition subMbPartldx.

Outputs of this process are

- lumamotion vectors mvLO and mvL1 as well as the chroma motion vectors mvCL0O and mvCL1

- reference indices refldxL0 and refldxL1

- prediction list utilization flags predFlagL 0 and predFlagL 1

For the derivation of the variables mvL0 and mvL1 aswell as refldxL0 and refldxL 1, the following applies.

- If mb_typeisequal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
dlices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvLO and reference indices
refldxLO, and predFlagLO is set equal to 1. mvL1 and refldxL1 are marked as not available and predFlagL 1 is set
equa to 0.

- Otherwise, if mb_type is equal to B_Skip, or B_Direct 16x16 or sub_mb type[subMbPartldx] is equal to
B_Direct_8x8, the derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8 in B
dices in subclause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma
motion vectors mvLO, mvL1, the reference indices refldxLO, refldxL1, and the prediction utilization flags
predFlagL 0 and predFlagL 1.

- Otherwise, for X being replaced by either 0 or 1 in the variables predFlagL X, mvLX, refldxLX, and in Pred_LX and
in the syntax elementsref_idx_IX and mvd_IX, and the following applies.

- If MbPartPredMode(mb_type, mbPartldx) is equal to Pred_L X or to BiPred,
refldxLX = ref_idx_|X[mbPartldx] (8-120)

predFlagLX = 1 (8-121)

- Otherwise, the following applies.
- ThevariablesrefldxLX and predFlagL X are specified by
refldxLX =-1 (8-122)
predFlagLX = 0 (8-123)
- The derivation process for luma motion vector prediction in subclause 8.4.1.3 is invoked with mbPartldx

subMbPartldx, refldxLX, and list suffix LX as the input and the output being mvpLX. The luma motion
vectors are derived by.

DRAFT I TU-T Rec. H.264 (2002 E) 109

mvLX[0] = mvpLX[O] + mvd_IX[mbPartldx][subMbPartidx][O] (8-124)
mvLX[1] =mvpLX[1]+ mvd_IX[mbPartldx][subMbPartidx][1] (8-125)

For the derivation of the variables for the chroma motion vectors, the following applies. When predFlagL X (with X
being either 0 or 1) is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with
mvL X and refldxL X asinput and the output being mvCLX.

8.4.1.1 Derivation processfor luma motion vectorsfor skipped macroblocksin P and SP slices
This processis invoked when mb_typeis equal to P_Skip.
Outputs of this process are the motion vector mvL0 and the reference index refldxLO.

The reference index refldxL 0 for a skipped macroblock is derived as follows.

refldxLO = 0. (8-126)

For the derivation of the motion vector mvLO of a P_Skip macroblock type, the following applies.

- The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx set equal to 0, subMbPartldx set equal to O,
and list suffix LO as input and the output is assigned to mbAddrA, mbAddrB, mvLOA, mvLOB, refldxLOA, and
refldxLOB.

- ThevariablemvLO is specified as follows.
- If any one of the following conditions is true, both components of the motion vector mvLO are set equal to 0.
- mbAddrA isnot available
- mbAddrB isnot available
- refldxLOA isequal to 0 and both components of mvLOA are equal to O
- refldxLOB isequal to 0 and both components of mvLOB are equal to O

- Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is invoked
with mbPartldx = 0, subMbPartldx = 0, refldxL0, and list suffix LO as input and the output is assigned to mvLO.

NOTE — The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation processfor luma motion vectorsfor B_Skip, B_Direct_16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B_Direct_16x16, or sub_mb_type[mbPartidx] is equal to
B_Direct_8x8.

Inputs to this process are mbPartldx and subM bPartl dx.
Outputs of this process are the reference indices refldxLO, refldxL1, the motion vectors mvLO and mvL1, and the
prediction list utilization flags, predFlagL0 and predFlagL 1.

The derivation process depends on the value of direct_spatial_mv_pred flag, which is present in the bitstream in the
dlice header syntax as specified in subclause 7.3.3, and is specifed as follows.

- If direct_spatial_mv_pred_flag is equal to 1, the mode in which the outputs of this process are derived is referred to
as spatial direct prediction mode.

- Otherwise (direct_spatial_mv_pred flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
subclause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows.

- |If spatia direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
subclause 8.4.1.2.2 is used.

- Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in subclause 8.4.1.2.3 is used.

8.4.1.2.1 Derivation processfor the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx and subM bPartl dx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCal, the
reference index refldxCol, and the variable vertMvScale (which can be One_To_One, Frm_To_Fld or Fld_To_Frm).

110 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Let firstRefPicL 1 be the reference picture referred by RefPicList1] O].

When firstRefPicL 1 is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL 1Bottom be the top
and bottom fields of firstRefPicL 1, and let the following variables be specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Top, CurrPic)) (8-127)
bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL 1Bottom, CurrPic)) (8-128)
The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-5.

Table 8-5 — Specification of the variable colPic

field pic flag | Thefirst entry mb_field decoding flag | additional condition colPic
in RefPicListl
is...
afidd of a tg;?}{;ﬁ'}?ﬁg
1 decoded frame firstRefPicL 1
adecoded field firstRefPicL 1
a decoded frame firstRefPicL1
topAbsDiffPOC < the top field of
bottomAbsDiffPOC firstRefPicL 1
0
topAbsDiffPOC >= the bottom field
0 a bottomA bsDiffPOC of firstRefPicL 1
complementary
field pair __ the top field of
(CurrMbAddr & 1) == firsRefPicl 1
1
_ the bottom field
(CurrMbAddr & 1) =0 of firdRefRicL 1

When direct_8x8_inference flagisequal to 1, subMbPartldx is set as follows.

subMbPartldx = mbPartl dx (8-129)
Let PicCodingStruct(X) be afunction with the argument X being either CurrPic or colPic. It is specified in Table 8-6.

Table 8-6 — Specification of PicCodingStruct(X)

X is coded with field_pic flagequal to ... | mb_adaptive frame field flag | PicCodingStruct(X)

1 FLD
0 0 FRM
0 1 AFRM

With lumadx4Blkldx = mbPartldx * 4 + subMbPartldx, the inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 is invoked with lumadx4BIkldx as the input and (X, y) assigned to (xCol, yCol) as the output.

Table 8-7 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address mbAddrX depending on PicCodingStruct(CurrPic), and
PicCodingStruct(colPic).
NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field_decoding_flag and the variable
fieldDecodingFlagX, which is derived as follows.

DRAFT ITU-T Rec. H.264 (2002 E) 111

- If the macroblock mbAddrX in the picture colPic is afield macroblock, fieldDecodingFlagX is set equal to 1

- Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is set
equal to 0.

Unspecified valuesin Table 8-7 indicate that the value of the corresponding variable is not relevant for the current table
row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.

mbAddrColl =2 * PicwidthinMbs* (CurrMbAddr / PicWidthinMbs) +

(CurrMbAddr % PicWidthinMbs) + PicWidthinMbs* (yCol / 8) (8-130)
mbAddrCol2 = 2* CurrMbAddr + (yCol / 8) (8-131)
mbAddrCol3 = 2 * CurrMbAddr + bottom_field flag (8-132)
mbAddrCol4 = PicWidthinMbs* (CurrMbAddr / (2 * PicwWidthinMbs)) +

(CurrMbAddr % PicWidthinMbs) (8-133)
mbAddrCol5 = CurrMbAddr / 2 (8-134)
mbAddrCol6 =2 * (CurrMbAddr / 2) + ((topAbsDiffPOC < bottomAbsDiffPOC) ?0: 1) (8-135)
mbAddrCol7 =2 * (CurrMbAddr /2) + (yCol / 8) (8-136)

Table 8-7 — Specification of mbAddrCol, yM, and vertMvScale

[
t | & g
> B "'—l
S| < 2%
5 | % e
0] 0] = o) o
£ N)| I 3
o ko] o D O >
s8] = |29 % :
£ | & £ E|2 £ g 2
FLD CurrMbAddr |yCal One To One
FRM mbAddrColl |(2* yCol) % 16 Frm To Fid
FLD
0 |mbAddrCol2 |(2* yCol) % 16 Frm To Fld
AFRM | 2* CurrMbAddr
1 | mbAddrCol3 |yCoal One To One
8* ((CurrMbAddr / PicWidthinMbs) % 2)
ERM FLD mbAddrCol4 +4% (yCol / 8) Fld To Frm
FRM CurrMbAddr |yCol One To One
LD 0 mbAddrCol5 |8* (CurrMbAddr % 2) +4* (yCol / 8) Fld To Frm
1 mbAddrCol5 |yCol One To One
0 | CurrMbAddr |yCol One To_One
AFRM CurrMbAddr 0
AERM 1 |mbAddrCol6 |8* (CurrMbAddr%2)+4* (yCol/8) |Fld To Frm
0 | mbAddrCol7 |(2* yCol) % 16 Frm To Fid
CurrMbAddr 1
1 [CurrMbAddr |yCol One To One

112 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the sub-
macroblock partition index of the co-located sub-macroblock partition. The partition in the macroblock mbAddrCol
inside the picture colPic covering the sample (xCol, yM) shall be assigned to mbPartldxCol and the sub-macroblock
partition inside the partition mbPartldxCol covering the sample (xCol, yM) in the macroblock mbAddrCol inside the
picture col Pic shall be assigned to subMbPartldxCol.

The prediction utilization flags predFlagL0Col and predFlagL 1Col are set equal to PredFlagLO[mbPartldxCol] and
PredFlagL 1] mbPartldxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartldxCol inside the picture colPic.

The motion vector mvCol and the reference index refldxCol are derived as follows.

- If the macroblock mbAddrCol is coded in Intra macroblock prediction mode or both prediction utilization flags,
predFlagL0Col and predFlagL 1Col are equal to 0, both components of mvCol are set equal to 0 and refldxCol is set
equal to 1.

- Otherwise, the following applies.

- If predFlagLOCoal is equal to 1, the motion vector mvCol and the reference index refldxCol are set equal to
MvLO[mbPartldxCol][subMbPartldxCol] and RefldxLO[mbPartldxCol], respectively, which are the motion
vector mvLO and the reference index refldxLO that have been assigned to the (sub-)macroblock partition
mbAddrCol\mbPartl dxCol\subMbPartldxCol inside the picture colPic.

- Otherwise (predFlagLOCol is equal to 0 and predFlagL1Col is equal to 1), the motion vector mvCol and the
reference index refldxCol ae set equa to MvL1] mbPartldxCol][subMbPartldxCol] and
RefldxL1[mbPartldxCol], respectively, which are the motion vector mvL1 and the reference index refldxL 1 that
have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside the
picture colPic.

8.4.1.2.2 Derivation processfor spatial direct luma motion vector and referenceindex prediction mode
This process isinvoked when direct_spatial_mv_pred flag isequal to 1 and any of the following conditionsis true.
- mb_typeisequal to B_Skip
- mb_typeisequal to B_Direct_16x16
- sub_mb_typel mbPartldx] isequal to B_Direct_8x8.
Inputs to this process are mbPartldx, subMbPartldx.

Outputs of this process are the reference indices refldxLO, refldxL1, the motion vectors mvLO and mvL1, and the
prediction list utilization flags, predFlagL0 and predFlagL 1.

The reference indices refldxLO and refldxL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, and list suffix LO as
input and the output is assigned to the motion vectors mvLON and the reference indices refldxLON with N being
replaced by A, B, or C.

2. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, and list suffix L1 as
input and the output is assigned to the motion vectors mvL1N and the reference indices refldxL 1IN with N being
replaced by A, B, or C.

NOTE — The motion vectors mvLON, mvL1N and the reference indices refldxLON, refldxL1N are identical for al 4x4 sub-
macroblock partitions of a macroblock.

3. ThereferenceindicesrefldxLO, refldxL 1, and directZeroPredictionFlag are derived by

refldxL0 = MinPositive(refldxLOA, MinPositive(refldxLOB, refldxLOC)) (8-137)
refldxL1 = MinPositive(refldxL 1A, MinPositive(refldxL 1B, refldxL1C)) (8-138)
directZeroPredictionFlag = 0 (8-139)
where
i Min(x, if x>=0andy>=0
MinPositive(x,y) =} 1NCxY) if x>=0andy (8-140)

TMax(x,y) otherwise

4, When both reference indices refldxL 0 and refldxL 1 are less than O,

DRAFT ITU-T Rec. H.264 (2002 E) 113

refldxLO=0 (8-141)
refldxL1 =0 (8-142)
directZeroPredictionFlag = 1 (8-143)

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCal.
The variable colZeroFlag is derived as follows.
- If all of the following conditions are true, colZeroFlag is set equal to 1.
- thereference picture referred by RefPicList1[0] is a short-term reference picture
- refldxCol isequa to 0

- both motion vector components mvCol[0] and mvCol[1] lie in the range of -1 to 1 in units specified as
follows.

- If the colocated macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
guarter luma frame samples.

- Otherwise (the colocated macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are units
of quarter lumafield samples.

NOTE — For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of amotion vector for
the current macroblock in cases when the current macroblock is a frame macroblock and the colocated macroblock is a field
macroblock or when the current macroblock is a field macroblock and the colocated macroblock is a frame macroblock. This
aspect differs from the use of mvCol[1] in the temporal direct mode as specified in subclause 8.4.1.2.3, which applies scaling to
the motion vector of the colocated macroblock to use the same units as the units of a motion vector for the current macroblock,
using Equation 8-146 or Equation 8-147 in these cases.

- Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvL X (with X being O or 1) are derived as follows.

- If any of the following conditionsis true, both components of the motion vector mvLX are set equal to 0.
- directZeroPredictionFlag is equal to 1
- refldxLX islessthan O
- refldxLX isequal to 0 and colZeroFlag is equal to 1

- Otherwise, the process specified in subclause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = O, refldxLX,
and list suffix LX asthe input and the output is assigned to mvLX.

NOTE - In the immediately above case, the returned motion vector mvLX is identical for al 4x4 sub-macroblock
partitions of a macroblock.

The prediction utilization flags predFlagL0 and predFlagL 1 shall be derived as specified using Table 8-8.

Table 8-8 — Assignment of prediction utilization flags

refldxLO refldxL1 predFlagL 0 predFlagL 1
>=0 >=0 1 1
>=0 <0 1 0
<0 >=0 0 1

8.4.1.2.3 Derivation process for temporal direct luma motion vector and referenceindex prediction mode
This process isinvoked when direct_spatial_mv_pred flag isequal to 0 and any of the following conditionsis true.
- mb_typeisequal toB_Skip
- mb_typeisequal to B_Direct_16x16
- sub_mb_typel mbPartldx] isequal to B_Direct_8x8.
Inputs to this process are mbPartldx and subMbPartldx.

114 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Outputs of this process are the motion vectors mvL0 and mvL 1, the reference indices refldxL0 and refldxL 1, and the
prediction list utilization flags, predFlagL0 and predFlagL 1.

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCaol, refldxCol, and vertMvScale.

The reference indices refldxL0 and refldxL 1 are derived as follows.

refldxLO = ((refldxCol <0) ?0: MapCol ToListO(refldxCol)) (8-144)
refldxkL1=0 (8-145)

NOTE - If the current macroblock is a field macroblock, refldxLO and refldxL1 index a list of fields; otherwise (the current
macroblock is aframe macroblock), refldxL0 and refldxL 1 index alist of frames or complementary reference field pairs.

Let refPicCol be aframe, afield, or a complementary field pair that was referred by the reference index refldxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapCol ToListO(refldxCol) is
specified as follows.

- If vertMvScale is equal to One To One, MapCol ToListO(refldxCol) returns the lowest valued reference index
refldxLO in the current reference picture list RefPicListO that references refPicCol. RefPicListO shall contain a
variable PicNum or LongTermPicNum that references refPicCol.

- Otherwise, if vertMvScale is equal to Frm_To_FId, MapCol ToListO(refldxCol) returns the lowest valued reference
index refldxLO in the current reference picture list RefPicListO that references the field of refPicCol with the same
parity as the current macroblock. RefPicListO shall contain a variable PicNum or LongTermPicNum that references
the field of refPicCol with the same parity as the current picture CurrPic.

- Otherwise (vertMvScale is equal to FId To Frm), MapCol ToListO(refldxCol) returns the lowest valued reference
index refldxLO in the current reference picture list RefPicListO that references the frame or complementary field pair
that contains refPicCol. RefPicListO shall contain a variable PicNum or LongTermPicNum that references the frame
or complementary field pair that contains refPicCol.

NOTE — A decoded reference picture that was marked as "used for short-term reference” when it was referenced in the
decoding process of the picture containing the co-located macroblock may have been modified to be marked as "used
for long-term reference” before being used for reference for inter prediction using the direct prediction mode for the
current macroblock.

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows.

- If vertMvScaeisegua to Frm_To_FId

mvCol[1] =mvCol[1]/ 2 (8-146)
- Otherwiseg, if vertMvScaleisequal to Fld_To Frm

mvCol[1] =mvCol[1] * 2 (8-147)

- Otherwise (vertMvScale is equal to One_To_One), mvCol[1] remains unchanged.

The two motion vectors mvL0 and mvL 1 for each 4x4 sub-macroblock partition of the current macroblock are derived as
follows:

NOTE — It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and
reference pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample
valuesin larger units than 4x4 luma sample blocks. For example, when direct_8x8_inference flag isequal to 1, at least
each 8x8 luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

— If the reference index refldxLO refers to a long-term picture, or DiffPicOrderCnt(picA, picB) with picA being the
picture referred by RefPicListl] refldxL1] and picB being the picture referred by RefPicListO[refldxLO] is equal
to 0, the motion vectors mvL 0, mvL 1 for the direct mode partition are derived by

mvL0O = mvCol (8-148)
mvL1=0 (8-149)

— Otherwise, the motion vectors mvLO, mvL1 are derived as scaled versions of the motion vector mvCol of the co-
located sub-macroblock partition as specified below (see Figure 8-2)

tx = (16384 + Abs(td/2))/td (8-150)

DRAFT ITU-T Rec. H.264 (2002 E) 115

DistScaleFactor = Clip3(-1024, 1023, (th* tx + 32) >>6) (8-151)
mvLO = (DistScaleFactor * mvCol + 128) >> 8 (8-152)
mvL1 = mvLO - mvCoal (8-153)

where tb and td are given as follows with picO being the decoded reference picture specified by
RefPicListO[refldxL0] and picl being the decoded reference picture specified by RefPicList1] refldxL1]

tb = Clip3(-128, 127, DiffPicOrderCnt(CurrPic, pic0)) (8-154)
td = Clip3(-128, 127, DiffPicOrderCnt(picl, pic0)) (8-155)

NOTE - mvL0 and mvL1 cannot exceed the ranges specified in Annex A.
The prediction utilization flags predFlagL0 and predFlagL 1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between
thelist O reference picture and the list 1 reference picture.

List 0 Reference Current B List 1 Reference

direct-mode B partition

T~ co-located partition
]&]

time

Figure 8-2 -Example for temporal direct-mode motion vector inference (infor mative)

8.4.1.3 Derivation processfor luma motion vector prediction

Inputs to this process are

- the macroblock partition index mbPartldx,

- the sub-macroblock partition index subMbPartl dx,

- listsuffix LX,

- thereferenceindex of the current partition refldxLX.

Output of this processis the prediction mvpL X of the motion vector mvLX.

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartldx,
subMbPartldx, and list suffix LX as the input and with mbAddrN\mbPartldxN\subMbPartldxN, reference indices
refldxL XN and the motion vectors mvL XN with N being replaced by A, B, or C as the output.

The derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with
mbA ddrN\mbPart! dxN\subMbPartldxN, mvL XN, refldxL XN with N being replaced by A, B, or C and refldxL X as the
input and mvpL X as the output, unless one of the following is true.

- MbPartWidth(mb_type) is equa to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal to0, and
refldxLXB is equal to refldxLX,

mvpLX = mvLXB (8-156)

116 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to8, mbPartldx is equal to 1, and
refldxL XA isequal to refldxL X,

mvpLX = mvLXA (8-157)

MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb _type) is equal to 16, mbPartldx is equal to 0, and
refldxL XA isequal to refldxL X,

mvpLX = mvLXA (8-158)

MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb _type) is equal to 16, mbPartldx is equal to 1, and
refldxLXC is equal to refldxLX,

mvpLX = mvLXC (8-159)

Figure 8-3 illustrates the non-median prediction as described above.

8*16 16*8

I P v

Figure 8-3 - Directional segmentation prediction (infor mative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are

the neighbouring partitions mbAddrN\mbPartl dxN\subMbPartldxN (with N being replaced by A, B, or C),
the motion vectors mvL XN (with N being replaced by A, B, or C) of the neighbouring partitions,
the reference indices refldxL XN (with N being replaced by A, B, or C) of the neighbouring partitions, and

the reference index refldxL X of the current partition.

Output of this processis the motion vector prediction mvpLX.

The variable mvpL X is derived as follows:

When both partitions mbAddrB\mbPartldxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not
available and mbAddrA\mbPartldxA\subM bPartldxA is available,

mvLXB = mvLXA (8-160)
mvLXC = mvLXA (8-161)
refldxLXB = refldxL XA (8-162)
refldxLXC = refldxL XA (8-163)

Depending on reference indices refldxL XA, refldxLXB, or refldxL XC, the following applies.

- If one and only one of the reference indices refldxL XA, refldxLXB, or refldxLXC is equal to the reference index
refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is equal to
refldxL X, the motion vector mvL XN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN (8-164)

DRAFT ITU-T Rec. H.264 (2002 E) 117

- Otherwise, each component of the motion vector prediction mvpLX is given by the median of the corresponding
vector components of the motion vector mvL XA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[O], mvLXB[0], mvLXC[0]) (8-165)
mvpLX[1] = Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-166)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions
Inputs to this process are

- the macroblock partition index mbPartldx,

- the sub-macroblock partition index subMbPartl dx,

- thelist suffix LX

Outputs of this process are (with N being replaced by A, B, or C)

- mbAddrN\mbPartldxN\subMbPartldxN specifying neighbouring partitions,
- the motion vectors mvL XN of the neighbouring partitions, and

- thereferenceindices refldxL XN of the neighbouring partitions.

The partitions mbAddrN\mbPartl dxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps.

1. Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

2. The processin subclause 6.4.7.5 isinvoked with mbPartldx and subMbPartldx as input and the output is assigned to
mbA ddrN\mbPartl dxN\subMbPartldxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartl dxC\subMbPartldxC is not available, the following applies

mbAddrC = mbAddrD (8-167)
mbPartldxC = mbPartldxD (8-168)
subMbPartldxC = subMbPartldxD (8-169)

The motion vectors mvL XN and reference indices refldxLXN (with N being A, B, or C) are derived as follows.

- If the macroblock partition or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartldxN is not available or
mbAddrN is coded in Intra prediction mode or predFlagL X of mbAddrN\mbPartldxN\subMbPartldxN is equal to O,
both components of mvL XN are set equal to 0 and refldxL XN is set equal to —1.

- Otherwise, the following applies.

- The motion vector mvLXN and reference index refldxkLXN are set equa to
MVLX[mbPartldxN][subMbPartldxN] and RefldxL X[mbPartldxN], respectively, which are the motion vector
mvLX and reference index refldxLX that have been assigned to the (sub-)macroblock partition
mbA ddrN\mbPartl dxN\subM bPartl dxN.

- ThevariablesmvLXN[1] and refldxLXN are further processed as follows.

- If the current macroblock is afield macroblock and the macroblock mbAddrN is aframe macroblock

MVLXN[1] =mvLXN[1]/2 (8-170)

refldxL XN = refldxLXN * 2 (8-171)

- Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macrobl ock

MVLXN[1] =mvLXN[1] * 2 (8-172)

refldxLXN = refldxLXN / 2 (8-173)

118 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- Otherwise, the vertical motion vector component mvLXN[1] and the reference index refldxL XN remain
unchanged.

8.4.1.4 Derivation processfor chroma motion vectors
Inputs to this process are aluma motion vector mvL X and areference index refldxL X.
Outputs of this process are a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector. Since the accuracy of luma motion
vectors is one-quarter sample and chroma has half resolution compared to luma, the accuracy of chroma motion vectors
is one-eighth sample, i.e., avalue of 1 for the chroma motion vector refers to a one-eighth sample displacement.

NOTE - For example when the luma vector applies to 8x16 luma samples, the corresponding chroma vector applies to 4x8 chroma
samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector applies to 2x2 chroma samples.

For the derivation of the motion vector mvCL X, the following applies.

- If the current macroblock is a frame macroblock, the horizontal and vertical components of the chroma motion
vector mvCLX are derived by multiplying the corresponding components of luma motion vector mvLX by 2,
through mapping one-quarter sample mvL X units to one-eighth sample mvCL X units

mMvCLX[0] =mvLX[0] (8-174)
mvCLX[1] =mvLX[1] (8-175)

- Otherwise (the current macroblock is a field macroblock), only the horizontal component of the chroma motion
vector mvCLX[0] is derived using Equation 8-174. The vertical component of the chroma motion vector
mvCLX[1] is dependent on the parity of the current field or the current macroblock and the reference picture,
which isreferred by the reference index refldxLX. mvCLX[1] isderived from mvLX[1] according to Table 8-9.

Table 8-9 — Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions mvCLX[1]
Reference picture (refldxL X) Current field (picture/macroblock)

Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding processfor Inter prediction samples

Inputs to this process are

- amacroblock partition mbPartldx,

- asub-macroblock partition subMbPartldx.

- variables specifying partition width and height, partWidth and partHeight

- lumamotion vectors mvLO and mvL 1 and chroma motion vectors mvCLO and mvCL 1
- reference indices refldxLO and refldxL1

- prediction list utilization flags, predFlagL 0 and predFlagL 1

Outputs of this process are

- the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart, of prediction luma
samples, and two (partWidth/2)x(partHeight/2) arrays predPartc,, predPartc, of prediction chroma samples, one for
each of the chroma components Cb and Cr.

Let predPartL0O_ and predPartL 1, be (partWidth)x(partHeight) arrays of predicted luma sample values and predPartL Ocy,
predPartL 1, predPartL Oc,, and predPartL 1, be (partWidth/2)x(partHeight/2) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagL X, RefPicListX, refldxLX, refPicLX, predPartLX,
the following is specified.

DRAFT ITU-T Rec. H.264 (2002 E) 119

When predFlagL X is equal to 1, the following applies.

- The reference frame consisting of an ordered two-dimensional array refPicL X of luma samples and two ordered
two-dimensional arrays refPicL X, and refPicL X, of chroma samples is derived by invoking the process specified
in subclause 8.4.2.1 with refldxL X and RefPicListX given asinput.

- Thearrays predPartL X, predPartL X ¢y, and predPartL X ¢, are derived by invoking the process specified in subclause
8.4.2.2 with the current partition specified by mbPartldx\subM bPartldx, the motion vectors mvLX, mvCLX, and the
reference arrays with refPicL X, refPicL X ¢,, and refPicL X, given asinput.

For C being replaced by L, Cb, or Cr, the array predPartc of the prediction samples of component C is derived by
invoking the process specified in subclause 8.4.2.3 with the current partition specified by mbPartldx and subMbPartldx
and the array predPartLOc and predPartL 1 as well as predFlagL 0 and predFlagL 1 given asinput.

8.4.2.1 Reference picture selection process
Input to this processis areference index refldxL X.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicL X and two
two-dimensional arrays of chroma samples refPicL X ¢, and refPicL X .

Reference picture list RefPicListX is a list of variables PicNum (for short-term reference pictures) and
LongTermPicNum (for long-term reference pictures) of previously decoded reference frames, complementary reference
field pairs, or non-paired reference fields that have been marked as “used for reference” as specified in subclause 8.2.5.

Depending on field_pic_flag, the meaning of PicNum and LongTermPicNum is specified as follows.

- Iffied_pic flagisequal to 1, al entries of the RefPicListX are variables PicNum and LongTermPicNum of decoded
reference fields or fields of decoded reference frames.

- Otherwise (field_pic flag is equal to 0), all entries of RefPicListX are variables PicNum and LongTermPicNum of
decoded reference frames or complementary reference field pairs.

The reference picture list RefPicListX is derived as specified in subclause 8.2.4.
For the derivation of the reference picture, the following applies.

- If field_pic flag is equal tol, the reference field or field of a reference frame referred by
PicNum = RefPicListX] refldxLX] or LongTermPicNum = RefPicListX] refldxLX] shall be the output. The output
reference field or field of areference frame consists of a (PicWidthinSamples)x(PicHeightinSamples,) array of luma
samples refPicL X and two (PicWidthInSamplesc)x(PicHeightinSamplesc) arrays of chroma samples refPicL X ¢, and
refPicL X¢;.

- Otherwise (field_pic_flag isequal to 0), the following applies.

- If the current macroblock is a frame macraoblock, the reference frame or complementary reference field pair
referred by PicNum = RefPicListX][refldxLX] or LongTermPicNum = RefPicListX[refldxLX] shall be the
output. The output reference frame or complementary reference field pair consists of a
(PicWidthinSamples)x(PicHeightinSamples) array of luma samples refPicLX, and two
(PicWidthInSamplesc)x(PicHeightinSamplesc) arrays of chroma samples refPicL X ¢, and refPicL X ;.

- Otherwise (the current macroblock is a field macroblock), the following applies.

- Let refFrame be the reference frame or complementary reference field pair that is referred by
PicNum = RefPicListX[refldxLX / 2] or LongTermPicNum = RefPicListX][refldxLX / 2].

- Thefield of refFrameis selected as follows.

- If refldxLX % 2 isequal to 0, the field of refFrame that has the same parity as the current macroblock shall
be the output.

- Otherwise (refldxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the current
macroblock shall be the output.

- The output reference field or field of a reference frame consists of a
(PicWidthinSamples,)x(PicHeightinSamples, /2) array of luma samples refPicLX, and two
(PicWidthInSamplesc)x(PicHeightlnSamplesc/2) arrays of chroma samples refPicL X ¢, and refPicL X¢,.

The reference picture sample arrays refPicL X, refPicLX ¢, refPicL X ¢, correspond to decoded sample arrays S, Scp, Scr
derived in subclause 8.7 for previous decoded pictures.

120 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.4.2.2 Fractional sampleinterpolation process

Inputsto this process are

- thecurrent partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
- thewidth and height partWidth, partHeight of this partition in luma-sample units,

- alumamoation vector mvLX given in quarter-luma-sample units,

- achromamotion vector mvCLX given in eighth-chroma-sample units, and

- the selected reference picture sample arraysrefPicL X, refPicL X ¢p, and refPicLX ¢y,

Outputs of this process are

- a(partWidth)x(partHeight) array predPartL X of prediction luma sample values and

- two (partWidth/2)x(partHeight/2) arrays predPartL X ¢,, and predPartL X, of prediction chroma sample values.

Let (xAL, YAL) be the location given in full-sample units of the upper-left luma sample of the current partition given by
mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
sampl es.

Let (xInt,, yInt_) be a luma location given in full-sample units and (xFrac,, yFrac,) be an offset given in quarter-
sample units. These variables are used only inside this subclause for specifying genera fractional-sample locations inside
the reference sample arrays refPicL X, refPicL X ¢, and refPicL X ;.

For each luma sample location (0 <=x, < partWidth, 0 <=y, < partHeight) inside the prediction luma sample array
predL X, the corresponding predicted luma sample value predL X [x., y,] is derived asfollows:

xint, =xA_ + (mvLX[0]>>2) +x_ (8-176)
yintg =yA + (mvLX[1]>>2) +y_ (8-177)
xFrac, =mvLX[0] & 3 (8-178)
yFrac, =mvLX[1] & 3 (8-179)

- The prediction sample value predL X[X, y.] is derived by invoking the process specified in subclause 8.4.2.2.1
with (xInt,, yInt,), (xFrac,, yFrac_) and refPicL X given asinput.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in one-eighth
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside
the reference sample arrays refPicL X ¢p, and refPicL X ;.

For each chroma sample location (0 <= x¢ < partWidth/2, 0 <=y, < partHeight/2) inside the prediction chroma sample
arrays predPartL X, and predPartL X, the corresponding prediction chroma sample values predPartL X cy[Xc, Yc] and
predPartL X[Xc, Yc] are derived as follows:

Xintc=(XAL>>1)+(mvCLX[0] >>3) + X¢ (8-180)
yintc=(yA_.>>1)+(mvCLX[1] >>3) +yc (8-181)
XFracc =mvCLX[0] & 7 (8-182)
yFracc =mvCLX[1] & 7 (8-183)

- The prediction sample value predPartL X[Xc, Yc] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntc, yIntc), (XFrace, yFrace) and refPicL X ¢y, given as input.

- The prediction sample value predPartLXc[Xc, Yc] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntc, yIntc), (XFrace, yFrace) and refPicL X ¢, given asinput.

8.4.2.2.1 Luma sampleinterpolation process

Inputs to this process are

- alumalocation in full-sample units (xInt,, yInt,),

- alumalocation offset in fractional-sample units (xFrac_, yFrac,), and

- thelumasample array of the selected reference picture refPicL X

Output of this process is a predicted luma sample value predPartLX [x., y, 1.

DRAFT ITU-T Rec. H.264 (2002 E) 121

cc

& [s] [

]

]

= & E

]

]

x|lQ | o

=

= [&

]

]

]

Figure 8-4 — Integer samples (shaded blockswith upper-case letters) and fractional sample positions (un-shaded
blockswith lower-case letters) for quarter sample luma inter polation.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicL X, of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX, [x., y.]. The locations (xZ,, yZ,) for each of the corresponding luma
samples Z, whereZ may be A,B,C,D,E,F, G, H, I, J K,L,M,N,P,Q,R, S, T, or U, inside the given array refPicL X,
of luma samples are derived as follows:

xZ, = Clip3(0, PicwidthinSamples, — 1, xInt,_ + xDZ)

yZ, = Clip3(0, PicHeightinSamples, — 1, yInt, + yDZ,) (8-184)
Table 8-10 specifies (xDZ,, yDZ,) for different replacements of Z.
Table 8-10 — Differential full-sample luma locations
Z A |B |C |D |E |F H |1 J K |L N Q T | U
xDZz, |0 |1 |O 2 | -1 2 |3 |2 -1 3
yDz, |-2 |-2 |-1 |-1 |0 |O 0O |0 |0 |1 |1 1 1 3 |3

Given the luma samples ‘A’ to ‘U’ at full-sample locations (XA, YA) to (XU, yU,), the luma samples ‘a to ‘s’ at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions shall
be derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1). The luma prediction values at quarter sample
positions shall be derived by averaging samples at full and half sample positions. The process for each fractional position
is described below.

The samples at half sample positions labelled b shall be derived by first calculating intermediate values denoted as b,
by applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half
sample positions labelled h shall be derived by first calculating intermediate values denoted as h; by applying the 6-

122

tap filter to the nearest integer position samplesin the vertical direction:

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

by=(E-5*F+20* G+20* H=5* | +J) (8-185)
hh=(A-5*C+20*G+20* M—-5*R+T) (8-186)

Thefinal prediction values b and h shall be derived using:

b=Clipl((b;+16)>>5) (8-187)
h=ClipL((hy + 16) >>5) (8-188)

The samples at half sample position labelled as j shall be derived by first calculating intermediate value denoted as j;
by applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result.

ji=cc—=5*dd+20* hy +20* m;—5* ee+ff, or (8-189)
ji=aa—5*bb+20* b, +20* s, —5* gg+ hh (8-190)

where intermediate values denoted as aa, bb, gg, s; and hh shall be derived by applying the 6-tap filter horizontally in
the same manner as the derivation of b, and intermediate values denoted as cc, dd, ee, m; and ff shall be derived by
applying the 6-tap filter vertically in the same manner as the derivation of h;. The final prediction value j shall be
derived using:

j = Clipl((j1 +512) >> 10) (8-191)

The final prediction values s and m shall be derived from s, and m, in the same manner as the derivation of b and h,
as given by:

s =Clipl((s, +16)>>5) (8-192)
m = Clip1((m, + 16) >>5) (8-193)

The samples at quarter sample positions labelled as a, ¢, d, n, f, i, k, and g shall be derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using:

a=(G+b+1)>>1 (8-194)
c=(H+b+1)>>1 (8-195)
d=(G+h+1)>>1 (8-196)
n=(M+h+1)>>1 (8-197)
f=(b+j+1)>>1 (8-198)
i=(h+j+1)>>1 (8-199)
k=(j+m+1)>>1 (8-200)
g=(j+s+1)>>1. (8-201)

— Thesamples at quarter sample positions labelled as e, g, p, and r shall be derived by averaging with upward rounding

of the two nearest samples at half sample positions in the diagonal direction using

e=(b+h+1)>>1 (8-202)
g=(b+m+1)>>1 (8-203)
p=(h+s+1)>>1 (8-204)
r=(m+s+1)>>1 (8-205)

The luma location offset in fractional-sample units (xFrac,, yFrac,) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX [x., y.]. This
assignment is done according to Table 8-11. The value of predPartLX, [x., y.] shall be the output.

Table 8-11 — Assignment of the luma prediction sample predPartL X, [X, Y.]

xFrac, 0 0 0 0 1 1 1 1 2 2 2 2 3 3
yFrac, 0 1 2 3 0 1 2 3 0 1 2 3 0 3
predPartLX [x,yi]1 | G | d h n a e [p b f i q C r
8.4.2.2.2 Chroma sample inter polation process
Inputsto this process are

DRAFT ITU-T Rec. H.264 (2002 E) 123

- achromalocation in full-sample units (XIntc, yIntc),

- achromalocation offset in fractional-sample units (xFracc, yFracc), and

- chroma component samples from the selected reference picture refPicL X .
Output of this processis a predicted chroma sample value predPartL X[Xc, Yc 1.

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicL X of chroma samples.

xFrac 8-xFrac,

Figure 8-5— Fractional sample position dependent variablesin chroma inter polation and surrounding integer
position samples A, B, C, and D.

These samples may be used for generating the predicted chroma sample value predPartL X[Xc, Yc]

XAc = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-206)
XBc = Clip3(0, PicwidthinSamplesc — 1, xIntc + 1) (8-207)
XC¢ = Clip3(0, PicWidthinSamplesc — 1, xInt¢) (8-208)
XDc = Clip3(0, PicwWidthinSamplesc — 1, XIntc + 1) (8-209)
yAc = Clip3(0, PicHeightinSamplesc — 1, yIntc) (8-210)
yBc = Clip3(0, PicHeightinSamplesc — 1, yIntc) (8-211)
yCc = Clip3(0, PicHeightinSamplesc — 1, ylntc + 1) (8-212)
yD¢ = Clip3(0, PicHeightinSamplesc — 1, yintc + 1) (8-213)

Given the chroma samples A, B, C, and D at full-sample locations, the predicted chroma sample vaue
predPartL X[Xc, Yc] is derived asfollows:

predPartL X[X¢, Ye 1 = ((8—xFracc) * (8 —yFracc) * A + xFracc* (8—yFracc) * B +
(8—xFracc) * yFracc* C + XFrace * yFracc * D +32)>>6 (8-214)
8.4.2.3 Weighted sample prediction process
Inputs to this process are
- mbPartldx: the current partition given by the partition index
- subMbPartldx: the sub-macroblock partition index
- predFlagL0 and predFlagL 1: prediction list utilization flags

- predPartLX,: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by LO or L1
depending on predFlagL 0 and predFlagL 1)

- predPartL X ¢, and predPartL X ¢,: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples, one for each of
the chroma components Ch and Cr (with LX being replaced by LO or L1 depending on predFlagL 0 and predFlagL 1)

Outputs of this process are
- predPart : a (partWidth)x(partHeight) array of prediction luma samples and

- predPartcy, and predPartc,: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples, one for each of the
chroma components Cb and Cr.

124 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

For macroblocks or partitions with predFlagL0 equal to 1 in P and SP slices, the following applies.

- If weighted pred flag is egual to O, the default weighted sample prediction process as described in subclause
8.4.2.3.1 isinvoked with the same inputs and outputs as the process described in this subclause.

- Otherwise (weighted_pred flag is equal to 1), the explicit weighted prediction process as described in subclause
8.4.2.3.2 isinvoked with the same inputs and outputs as the process described in this subclause.

For macroblocks or partitions with predFlagL 0 or predFlagL 1 equal to 1 in B slices, the following applies.

- If weighted_bipred_idc is equa to O, the default weighted sample prediction process as described in subclause
8.4.2.3.1 isinvoked with the same inputs and outputs as the process described in this subclause.

- Otherwise, if weighted bipred idc is equal to 1, the explicit weighted sample prediction process as described in
subclause 8.4.2.3.2, for macroblocks or partitions with predFlagL 0 or predFlagL 1 equal to 1 with the same inputs
and outpults as the process described in this subclause.

- Otherwise (weighted_bipred_idc is egual to 2), the following applies.

- If predFlagLOisequal to 1 and predFlagL 1 isequal to 1, the implicit weighted sample prediction as described in
subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

- Otherwise (predFlagL0 or predFlagL1 are equal to 1 but not both), the default weighted sample prediction
process as described in subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process described
in this subclause.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the component for which the prediction block is derived, the following applies.

- If the luma sample prediction values predPart, [X, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

- Otherwisg, if the chroma Cb component sample prediction values predPartc,[X, y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidth/2 - 1, and y set equal to O .. partHeight / 2 - 1.

- Otherwise (the chroma Cr component sample prediction values predPartc[X, y] are derived), the following applies
with C set equal to Ch, x set equal to O .. partWidth/2 -1, and y set equal to O .. partHeight / 2 - 1.

The prediction sample values are derived as follows.

- If predFlagLO isequal to 1 and predFlagL 1 isequal to O for the current partition
predPartc[X, y] = predPartLOc[X, y] (8-215)

- Otherwise, if predFlagLO is equal to 0 and predFlagL 1 is equal to 1 for the current partition
predPartc[X, y]= predPartL 1] X, ¥] (8-216)

- Otherwise (predFlagL 0 and predFlagL 1 are equal to 1 for the current partition),
predPartc[X,y] = (predPartLOc[X, y] + predPartL1c[X,y] +1) >> 1. (8-217)

8.4.2.3.2 Weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the component for which the prediction block is derived, the following applies.

- If the luma sample prediction values predPart, [X, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

- Otherwise, if the chroma Cb component sample prediction values predPartq X,y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidth /2 - 1, and y set equal to O .. partHeight / 2 - 1.

- Otherwise (the chroma Cr component sample prediction values predPartc[X, y] are derived), the following applies
with C set equal to Ch, x set equal to O .. partWidth/ 2 -1, and y set equal to O .. partHeight / 2 - 1.

DRAFT ITU-T Rec. H.264 (2002 E) 125

The prediction sample values are derived as follows

- If the partition mbPartldx\subMbPartldx has predFlagLO equal to 1 and predFlagL 1 equal to O, the final predicted
sample values predPartc[X, y] are derived by

if(logWD >=1)
predPart[x, y] = Clipl(((predPartLO[X, y] * wg + 2'%%P-1) >> [ogWD) + 05)

else (8-218)
predPartc[X, y] = Clipl(predPartLOc[X,y] * Wo + 0g)

- Otherwise, if the partition mbPartldx\subMbPartldx has predFlagL0 equal to 0 and predFlagL 1 equal to 1, the fina
predicted sample values predPartc[X, y] are derived by

if(logWD >=1)
predPartc] X, y] = Clipd(((predPartL1d] X,y] * wy + 2°%P-1) >> |ogWD) + 0,)

else (8-219)
predPartc[X,y] = Clipl(predPartL1c[X,y] * wy + 01)

- Otherwise (the partition mbPartldx\subMbPartldx has both predFlagLO and predFlagL1 equa to 1), the fina
predicted sample values predPartc[X, y] are derived by

predPart[x, y] = Clipl(((predPartLOc[X, y] * wo + predPartL1c] X,y] * wy + 2/°99VP) >>
(logWD+1))+((0p+0,+1)>>1)) (8-220)

The variablesin the above derivation for the prediction samples are derived as follows.
- If weighted bipred_idcisequal to 2 and the dlice _typeisequal to B,

logWD =5 (8-221)
00=0 (8-222)
0,=0 (8-223)

and wy and w;, are derived as follows.

- If DiffPicOrderCnt(picA, picB) isequa to 0 with picA being the picture referred by RefPicList1] refldxL1] and
picB being the picture referred by RefPicListO[refldxLO] or one or both reference pictures is a long-term
reference picture or (DistScaleFactor >> 2) < -64 or (DistScaleFactor >> 2) > 128 where DistScaleFactor is
specified in subclause 8.4.1.2.3

Wo = 32 (8-224)

wy =32 (8-225)
- Otherwise,

Wy = 64 — (DistScaleFactor >> 2) (8-226)

w; = DistScaleFactor >> 2 (8-227)

- Otherwise (weighted pred flag isequal to 1in P or SP slices or weighted_bipred_idc equal to 1 in B dlices), explicit
mode weighted prediction is used as follows.

- Thevariables refldxLOWP and refldxL 1WP are derived as follows.
- If MbaffFrameFlag isequal to 1 and the current macroblock is afield macroblock

refldxLOWP = refldxL0O >> 1 (8-228)
refldxLIWP =refldxL1 >> 1 (8-229)

- Otherwise (MbaffFrameFlag is equal to O or the current macroblock is a frame macroblock),

refldxLOWP = refldxL 0 (8-230)

126 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
refldxL1WP = refldxL1 (8-231)

- ThevariableslogWD, wy, Wy, 0, and 0, are derived as follows.

- If CinpredPartc[X, y] isreplaced by L for luma samples

logWD = luma_log2_weight_denom (8-232)
Wo = luma_weight_10[refldxLOWP] (8-233)
w; = luma weight_I1] refldxL1IWP] (8-234)
0o = luma_offset_|I0[refldxLOWP] (8-235)
0, = luma_offset_I1] refldxL1IWP] (8-236)

- Otherwise (C in predPartc[X,y] is replaced by Cb or Cr for chroma samples, with iCbCr =0 for Cb,
iCbCr =1 for Cr),

logWD = chroma_log2_weight_denom (8-237)
Wy = chroma_weight_|0[refldxLOWP][iCbCr] (8-238)
w; = chroma_weight_|1] refldxL1WP][iCbCr] (8-239)
0p = chroma_offset_I0[refldxLOWP][iCbCr] (8-240)
0, = chroma_offset_I1] refldxLIWP][iCbCr] (8-241)

When in explicit mode weighted prediction mode and predFlagL0 equal to 1 and predFlagL 1 equal to 1, the following
constraints shall be obeyed

-128 <= Wo + W, <= 127 (8-242)

NOTE — For implicit mode weighted prediction, weights are guaranteed to bein therangeis -64 <= w,, w; <= 128.

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral6x16DCLeve (if available), Intral6x16ACLevel (if available), LumalLevel (if available),
ChromaDCLevel, ChromaACLevel, and available Inter or Intra prediction sample arrays for the current macroblock for
the applicable component pred,, predcy, or prede;.

NOTE — When decoding a macroblock in Intra_4x4 prediction mode, the luma component of the macroblock prediction array may
not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process for luma samples as specified in subclause 8.3.1
and the process specified in this subclause are iterated.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
component S', S'cp, Or S

NOTE — When decoding a macroblock in Intra_4x4 prediction mode, the luma component of the macroblock constructed sample
arrays prior to the deblocking filter process may not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process
for luma samples as specified in subclause 8.3.1 and the process specified in this subclause are iterated.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P Skip or B Skip, al values of Lumalevel, ChromaDCLevel,
ChromaACLevel are set equal to O for the current macroblock.

8.5.1 Specification of transform decoding process for residual blocks

When the current macroblock prediction mode is not equal to Intra_16x16, the variable Lumalevel contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by lumadx4Blklidx = 0..15, the following ordered
steps are specified.

1. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
LumaL evel[lumadx4Blkldx] as the input and the two-dimensional array c as the output.

DRAFT ITU-T Rec. H.264 (2002 E) 127

8.5.2

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢ as
theinput and r as the outpuit.

The position of the upper-left sample of a 4x4 luma block with index lumadx4BIkldx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with lumadx4Blkldx as the
input and the output being assigned to (xO, yO).

The 4x4 array u with elements u; for i, j = 0..3 isderived as

Ui = Clipl(pred [XO +j, yO+i] +r;) (8-243)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
lumadx4Blkldx, u astheinput and S' as the outpui.

Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra 16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1.

2.

128

The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
Intral6x16DCLevel as the input and the two-dimensional array ¢ as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
as specified in subclause 8.5.6 isinvoked with ¢ as the input and dcY as the output.

For a 4x4 lumablock indexed by lumadx4Blkldx = 0..15, the following ordered steps are specified.

a. Thevariable lumalList, which isalist of 16 entries, is derived. The first entry of lumaList is the corresponding
value from the array dcY. Figure8-6 shows the assignment of the indices of the array dcY to the
lumadx4Blkldx. The two numbers in the small squares refer to indices i and j in dcY;;, and the numbers in
large squares refer to lumadx4Blkldx.

Figure 8-6 — Assignment of theindices of dcY to luma4x4Blkldx.

The elementsin lumalList with index k = 1..15 are specified as

lumaList] k] = Intral6x16ACLevel[lumadx4BIkidx][k - 1] (8-244)

b. Theinverse transform coefficient scanning process as described in subclause 8.5.4 isinvoked with lumaList as
the input and the two-dimensional array ¢ as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
c asthe input and r as the output.

d. The position of the upper-left sample of a4x4 luma block with index lumadx4BIkldx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with lumadx4Blkldx as
the input and the output being assigned to (xO, yO).

e. The4x4 array u with elements u; for i, j = 0.3 isderived as

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
u;j = Clipl(pred, [xO +],yO+i] +r;) (8-245)

f. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
lumadx4Blkldx, u astheinput and S’ as the outpuit.

8.5.3 Specification of transform decoding process for chroma samples

For each chroma component, the variables ChromaDCLevel[iCbCr] and ChromaACLevel[iCbCr], with iCbCr set
equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform
coefficients. For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The 2x2 chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed by iCbCr of the
macroblock are decoded.

a. The2x2 array cisderived using the inverse raster scanning process applied to ChromaDCL evel as follows

_ éChromaDCLevel [iCbCr J0] ChromaDCLevel[iCbCr][1]y

C=A (8-246)
gChromaDCLe\/eI[icbCr [2] ChromaDCLevel[iCbCr |[3]H

b. The scaling and transformation process for chroma DC transform coefficients as specified in subclause 8.5.7 is
invoked with ¢ as the input and dcC as the output.

2. For each 4x4 chroma block indexed by chromadx4Blkldx = 0..3 of the component indexed by iCbCr, the following
ordered steps are specified.

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromalList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC to the
chromadx4Blkldx. The two numbers in the small squares refer to indicesi and j in dcC;;, and the numbers in
large squares refer to chromadx4BIkldx.

Figure 8-7 — Assignment of theindices of dcC to chroma4dx4BIk| dx.

The elements in chromaList with index k = 1..15 are specified as

chromaList[k] = ChromaACLevel[chromadx4Blkldx][k- 1] (8-247)

b. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromaList
as the input and the two-dimensional array c as the output.

c. Thescaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 isinvoked with ¢
astheinput and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chromadx4Blkldx inside the
macroblock is derived as follows

X0 = InverseRasterScan(chromadx4Blkldx, 4, 4, 8, 0) (8-248)

yO = InverseRasterScan(chromadx4BIkldx, 4, 4, 8, 1) (8-249)
e. The4x4 array u with elements u; for i, j = 0.3 isderived as

uj = Clipl(predc[XO +j,yO +i] +r1;) (8-250)

f. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chromadx4BIkldx, u astheinput and S' as the output.

DRAFT ITU-T Rec. H.264 (2002 E) 129

85.4 Inversescanning processfor transform coefficients
Input to this processisalist of 16 values.

Output of this processis avariable ¢ containing a two-dimensional array of 4x4 values with level assigned to locationsin
the transform block.

The decoding process maps the sequence of transform coefficient levels to the transform coefficient level positions. For
this mapping, the two inverse scanning patterns shown in Figure 8-8 are used.

The inverse zig-zag scan shal be used for frame macroblocks and the inverse field scan shall be used for field
macroblocks.

R
A A
Vo i

Figure 8-8 — a) Zig-zag scan. b) Field scan

Table 8-12 provides the mapping from the index idx of input list of 16 elementsto indicesi and j of the two-dimensional
array c.

Table 8-12 — Specification of mapping of idx to ¢; for zig-zag and field scan

idx 0] 1/]2|3]4|5|6]|7|8]9]10/11]12]13/14]|15

Zig-zag | Coo | Co1 | Ci0 | Coo | Cia | Coz2 | Cos | Ci2 | Co1 | C30 | Ca1 | Co2 | Ci3 | Co3 | Cao | Cas

field | Coo | Ci0 | Cor | Coo | Cao | €11 | Co1 | Ca1 | Cop | Cio | Co2 | Ca2 | Coz | Ci3 | Cos | Cas

8.5.5 Derivation processfor the quantisation parameters and scaling function
Input to this processis atwo-dimensional array of transform coefficient levels.

Outputs of this process are:

— QP¢: the chroma quantisation parameter

— QS the additional chroma quantisation parameter required for decoding SP and Sl slices (if applicable)
QP quantisation parameter values QPy, QP¢, QSy, and QS shall bein the range of 0 to 51, inclusive.

The value of QP for chromais determined from the current value of QPy and the value of chroma_gp_index_offset.

NOTE — The scaling equations are specified such that the equivalent quantisation parameter doubles for every increment of 6 in
QPy. Thus, thereis an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the value of QPy.

The value of QP¢ shall be determined as specified in Table 8-13 based on the indexing denoted gP,. The value of gP,
shall be derived asfollows.

gP, = Clip3(0, 51, QPy + chroma_qgp_index_offset) (8-251)

130 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 8-13 — Specification of QP as a function of qP,

gPR, <30 3031 (32|33|34|35|36|37|38|39|40 |41 |42 |43 |44 |45 |46 | 47 | 48| 49 | 50 | 51

QP: | =QP, | 29|30 |31|32|32|33|34|34|35|35|36|36|37|37|37|38|38|38|39|39]|39|39

When the current sliceisan SP or Sl dlice, Q¢ is derived using the above process, substituting QPy with QS, and QP¢
with QS..

The function LevelScale(m, i, j) is specified as follows:

Voo for (i,)T{(00),(02),(20),(22)},
LevelScaJe(m,i,j)z.lvrnl for (i,))T {(1,1),(1.3),(3.1),(3.3)}, (8-252)
¥vm2 otherwise;

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

é0 16 13y
g1l 18 14y
&3 20 160
4 23 183
6 25 200
g8 29 234

(8-253)

CD>|9> (I?>_\CD

8.5.6 Scaling and transfor mation process for luma DC transform coefficientsfor Intra_16x16 macroblock type

Inputs to this process are transform coefficient level values for luma DC transform coefficients of Intra_16x16
macroblocks as a4x4 array ¢ with elements ¢, where i and j form atwo-dimensional frequency index.

Outputs of this process are 16 scaled DC values for luma 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY
with elements dcY;.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

g 1 1 11\;@300 Cu Cp CoU€l 1 1 1o

N2
7 A

f:gl 1 -1 ‘]-Llrgclo Ci Cp Cizpa 1 -1 '1ul;l_ (8-254)

@ -1 -1 1, c, ¢, cl8 -1 -1 1
ue u
g‘- -1 1 -1y Cxy Cy Cssﬁg]- -1 1 -1

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element f; of f that exceeds the range of integer values from —2'° to 2"°~1, inclusive.

After the inverse transform, scaling is performed as follows.
- If QPy isgreater than or equal to 12, the scaled result shall be derived as

dey; = (f; * LevelScae (QP, %6, 0,0)) << (QP, /6- 2), with i,j=0.3. (8-255)
- Otherwise (QPy islessthan 12), the scaled result shall be derived as

deY, = (f,* LevelScale(QP, %6,0,0)+2%®)>> (2- QP, /6), with i,j=0.3 (8-256)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element dcY;; of dcY that exceeds the range of integer values from —2'° to 2"°~1, inclusive,

NOTE — Care should be used in the design of encoders to avoid difficulty with meeting the dynamic range requirements of the
decoding process for Intra_16x16 macroblocks when using small values of QPy (particularly for QPy < 6).

DRAFT ITU-T Rec. H.264 (2002 E) 131

8.5.7 Scaling and transformation processfor chroma DC transform coefficients

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as a 2x2 array ¢ with elements ¢;;, wherei and j form atwo-dimensional frequency index.

Outputs of this process are 4 scaled DC values as a 2x2 array dcC with elements dcC;;.
Theinverse transform for the 2x2 chroma DC transform coefficients is specified by:
. N C N
Fo& 1uugc o CorUEL 1; (8-257)
g‘- - 1ggCy Cy Hgl- -1y

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element f;; of f that exceeds the range of integer values from —2* to 2'°-1, inclusive.
After the inverse transform, scaling is performed as follows.

- If QP isgreater than or equal to 6, the scaled result shall be derived as

deC, = (f, * LevelScale(QP %6,0,0)) << (QP, /6- 1), with i,j=0,1 (8-258)

- Otherwise (QP¢ isless than 6), the scaled result shall be derived by

deC; = (f; * LevelScag(QP, %6,0,0)) >>1, with i,j=0,1 (8-259)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element dcC;; of dcC that exceeds the range of integer values from —2'° to 2"°~1, inclusive.

8.5.8 Scaling and transformation processfor residual 4x4 blocks

Input to this process is a 4x4 array ¢ with elements c; which is either an array relating to a residual block of the luma
component or an array relating to aresidual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elementsr;;.
The variable sMbFlag is derived as follows.

- If mb_typeis equa to Sl or the macroblock prediction mode is equal to Inter in an SP slice, sSMbFlag is set equal
to1l,

- Otherwise (mb_type not equal to Sl and the macroblock prediction mode is not equal to Inter in an SP dlice),
sMbFlag is set equal to 0.

The variable gP is derived as follows.

- If theinput array c relates to alumaresidua block and sMbFlag is equal to O

qP = QPy (8-260)
- Otherwisg, if the input array c relatesto alumaresidual block and sMbFlag isequal to 1

gP=QSy (8-261)
- Otherwisg, if the input array c relates to a chroma residual block and sMbFlag is equal to 0

qP = QP (8-262)
- Otherwise (the input array c relates to achromaresidua block and sMbFlag is equal to 1),

P = QSc (8-263)

Scaling of 4x4 block transform coefficient levels ¢; proceeds as follows.
- If all of the following conditions are true

- iisequa toO

- jiseguatoO

132 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- crelates to a luma residual block coded using Intra 16x16 prediction mode or ¢ relates to a chroma residual
block

the variable dy is derived by

doo = Coo (8-264)
- Otherwise,
d; =(c;* LevelScae(qP%6,i, |)) <<(gP/6), with 1i,j=0..3exceptasnoted above (8-265)

The bitstream shall not contain data that results in any element d; of d with i, j = 0..3 that exceeds the range of integer
values from —2% to 2'°-1, inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows.

8o =dio+ dip, with i=0.3 (8-266)
€1=0o—0dp with i=0.3 (8-267)
€= (dy>>1)-ds with i=0.3 (8-268)
@3=dy+(dz>>1), with i=0.3 (8-269)

The bitstream shall not contain data that results in any element e; of e with i, j = 0..3 that exceeds the range of integer
values from —2% to 21, inclusive.

Then, the transformed result is computed from these intermediate values as follows.

fo=@0+8s With i=0.3 (8-270)
fy=e,+e, with i=0.3 (8-271)
fo=6,—6, with i=0.3 (8-272)
fa=60—€s With i=0.3 (8-273)

The bitstream shall not contain data that results in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —2% to 21, inclusive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows.

0y = foj + fz, with j=0.3 (8-274)
Oy = fg—fy, with j=0.3 (8-275)
Oy = (fy>>1)—fy, with j=0.3 (8-276)
gy =fy+ (f5>>1), with j=0.3 (8-277)

The bitstream shall not contain data that results in any element g; of g with i, j = 0..3 that exceeds the range of integer
values from —2% to 21, inclusive.

Then, the transformed result is computed from these intermediate values as follows.
hOj = 0o t 93 with J =0.3 (8—278)

hy=gy+0y with j=0.3 (8-279)

DRAFT I TU-T Rec. H.264 (2002 E) 133

hy = gy — 0, with j=0.3 (8-280)

h3j = 0o — 93 with] =0..3 (8'281)
The bitstream shall not contain data that results in any element h; of h with i, j = 0..3 that exceeds the range of integer
values from —2%° to 2°-33, inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values shall be derived as

r, =(h, +2°)>>6 with i,j=0.3 (8-282)

8.5.9 Pictureconstruction processprior to deblocking filter process

Inputsto this process are

- lumadx4BIlkldx or chromadx4Blkldx

- aconstructed residual sample 4x4 array u with elements u;; which is either aluma or chroma residual block
- theprediction sample 4x4 array pred,, predc,, prede;

Outputs of this process are constructed sample blocks s' prior to the deblocking filter process.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When uisalumablock, for each sample u;; of the 4x4 luma block, the following applies.

- The position of the upper-left sample of a 4x4 luma block with index lumadx4BIkldx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with lumadx4Blkldx as the
input and the output being assigned to (xO, yO).

- Depending on the variable MbaffFrameFl ag, the following applies.
- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

S [XP+xO+j,yP+2* (yO+i)]=u; withi,j=0.3 (8-283)
- Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),
S [XP+xO+j,yP+yO+i]=u; withi,j=0.3 (8-284)

When u isachroma block, for each sample u;; of the 4x4 chroma block, the following applies.

- Thesubscript C in the variables S and predc is replaced with Cb for the Cb chroma component and with Cr for the
Cr chroma component.

- The position of the upper-left sample of a 4x4 chroma block with index chromadx4BIkldx inside the macroblock is
derived asfollows.

XO = InverseRasterScan(chromadx4Blkldx, 4, 4, 8,0) (8-285)
yO = InverseRasterScan(chromadx4BIkldx, 4, 4, 8, 1) (8-286)

- Depending on the variable MbaffFrameFl ag, the following applies.
- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

Sc[(xP>>1)+xO+j, ((yP+1)>>1)+2* (yO+i)]=uwithi,j=0.3 (8-287)
- Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S (XP>>1)+x0+j, ((yP+1)>>1)+yO+i]=u;withi,j=0.3 (8-288)

8.6 Decoding processfor P macroblocksin SP dicesor SI macroblocks

This processis invoked when decoding P macroblock typesin an SP slice type or an SI macroblock typein Sl slices.

134 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Inputs to this process are the prediction residual transform coefficient levels and the predicted samples for the current
macrobl ock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause specifies the transform coefficient decoding process and picture construction process for P macroblock
typesin SP dices and Sl macroblock typein Sl slices.

NOTE — SP dlices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P
dlice coding. Unlike P dlice coding, however, SP dlice coding alows identical reconstruction of a slice even when different
reference pictures are being used. Sl slices make use of spatial prediction, in a similar manner to | slices. Sl slice coding allows
identical reconstruction to a corresponding SP dlice. The properties of SP and Sl dlices aid in providing functionalities for
bitstream switching, splicing, random access, fast-forward, fast reverse, and error resilience/recovery.

An SP dlice consists of macroblocks coded either as | macroblock types or P macroblock types.
An Sl dlice consists of macroblocks coded either as | macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for |
macroblock types in Sl dlices shall be invoked as specified in subclause 8.5. SI macroblock type shall be decoded as
described below.

When the current macroblock is coded as P_Skip, all values of LumalLevel, ChromaDCLevel, ChromaACLevel are set
equal to O for the current macroblock.

8.6.1 SPdecoding processfor non-switching pictures
This processis invoked, when decoding P macraoblock typesin SP dlicesin which sp_for_switch flagisequal to O.

Inputs to this process are Inter prediction samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause applies to al macroblocks in SP slices in which sp for_switch flag is equal to O, except those with
macroblock prediction mode equal to Intra_4x4 or Intra_16x16. It does not apply to Sl slices.

8.6.1.1 Lumatransform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock pred, from subclause 8.4 and the
prediction residual transform coefficient levels, Lumal evel, and the index of the 4x4 luma block lumadx4BIkldx.

Outputs of this process are the decoded luma samples of the current macroblock prior to the deblocking filter process.

The position of the upper-left sample of the 4x4 luma block with index lumadx4Blkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with lumadx4Blkldx as the input
and the output being assigned to (x, y).

Let the variable p be a 4x4 array of prediction samples with element p;; being derived as follows.
pj = pred [x+j,y+i] withi,j=0.3 (8-289)

The variable p is transformed producing transform coefficients ¢ according to:

él 11]-gépoo Po Poz poa@(?]- 2 1 10

cP = é 1-1-2:3 o Pu P P ﬂgl l1-1- 23 (8-290)
21 -1 -1 1%20 Por P2 pzslgg- -1 -1 28
el -2 2 -1j@hy Pa Pz p33,Hgl -2 1 -1

The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
LumalLevel[lumadx4BIkidx] asthe input and the two-dimensional array c" with elements ¢;j" as the output.

The prediction residual transform coefficients ¢ are scaled using quantisation parameter QPy, and added to the transform
coefficients of the prediction block ¢® withi, j = 0..3 asfollows.

ci*=ci” + (((cj * LevelScale(QPy %6,i,j) * Aj) <<(QPy/6))>>6) (8-291)

where LevelScale(m, i, j) is specified in Equation 8-252, and where A is specified as:

DRAFT I TU-T Rec. H.264 (2002 E) 135

116 for (i,))T {(0,0).(0.2),(20), (2.2)},
A;=125 for (i) {(LD),(13),(31).(33)}, (8292)
%20 otherwise;

The function LevelScale2(m, i, j), used in the formulas below, is specified as:

.i. WmO for (I ’ J)T { (010)1 (012)1 (210)1 (2!2)} ’
LevelScae2(m,i, j) = |l w, for (@i,)T{(11),(13),(31),(33)}, (8-293)
¥ w, ., oOtherwise;

where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as:

é3107 5243 8066U
ng916 4660 74903

€10082 4194 6554U (8-294)

W = U
é 9362 3647 5825(J
€8192 3355 5243U
e u
g 7282 2893 4559(
The resulting sum, ¢®, is quantised with a quantisation parameter QS, and withi, j = 0..3 asfollows.

ci = (Sign(c;®) * (Abs(c;°) * LevelScale2(QSy %6,i,j) +(1<<(14+QS,/6))))>>(15+QS,/6)
(8-295)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢ as the
input and r as the output.

The 4x4 array u with elements u; is derived as follows.
uij = Cllpl(Fij) with |,] =0.3 (8—296)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with lumadx4Blkidx, u
astheinput and S' as the output.

8.6.1.2 Chromatransform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from subclause 8.4 and the
prediction residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

Outputs of this process are the decoded chroma samples of the current macroblock prior to the deblocking filter process.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chromadx4Blkldx with chromadx4BIkldx equal
to 0..3, the following applies.

- The position of the upper-left sample of a 4x4 chroma block with index chromadx4BIkldx inside the macroblock is
derived asfollows.

X = InverseRasterScan(chromadx4Blkldx, 4, 4, 8,0) (8-297)

y = InverseRasterScan(chromadx4Blkldx, 4, 4, 8, 1) (8-298)
- Let pbea4x4 array of prediction samples with elements p;; being derived as follows.

pj = prede] x +j,y+i] withi,j=0.3 (8-299)

- The4x4 array p istransformed producing transform coefficients c°(chromadx4Blkldx) using Equation 8-290.

136 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromalList] k]
with index k = 1..15 are specified as follows.

chromaList[k] = ChromaACLevel[iCbCr][chromadx4Blkldx][k- 1] (8-300)

- Theinverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromaList as the
input and the 4x4 array ¢’ as the output.

- The prediction residual transform coefficients ¢ are scaled using quantisation parameter QPc, and added to the
transform coefficients of the prediction block ¢® withi, j = 0..3 except for the combinationi = 0, j = 0 as follows.

ci° = ¢;P(chromadx4Blkldx) + (((¢ * LevelScale(QPc % 6,1i,j) * Ajj) << (QPc/6))>>6) (8-301)

- Theresulting sum, ¢’, is quantised with a quantisation parameter QS and with i, j = 0..3 except for the combination
i =0, j =0asfollows. The derivation of cy(chromadx4BIkldx) is described below in this subclause.

c;(chromadx4BIkidx) = (Sign(¢;°) * (Abs(¢;®) * LevelScale2(QSc % 6,1,) + (1<< (14+QS:/6)))) >>
(15+ QS /6) (8-302)

- The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
¢(chromadx4BIkldx) asthe input and r as the outpuit.
- The4x4 array u with elements u; is derived as follows.
u; = Clipa(r;) withi, j =0.3 (8-303)
- The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chromadx4Blkldx and u astheinput and S' as the output.

The derivation of the DC transform coefficient level cqoo(chromadx4BIkldx) is specified as follows. The DC transform
coefficients of the 4 prediction chroma 4x4 blocks of the current component of the macroblock are assembled into a 2x2
matrix with elements cq,”(chromadx4Blkldx) and a 2x2 transform is applied to the DC transform coefficients as follows

é lUGCOO(O) Coo (D el 1U
& -2 ek -

The chroma DC prediction residua transform coefficient levels, ChromaDCLevel[iCbCr][k] with k = 0..3 are scaled
using quantisation parameter QP, and added to the prediction DC transform coefficients as follows.

de? = (8-304)

dc;®= dg; + (((ChromaDCLevel[iChCr][] * 2+i] * LevelScale(QP: %6, 0,0) * Agy) << (QPc/6)) >>5)
withi,j=0,1 (8-305)

The 2x2 array dc®, is quantised using the quantisation parameter QS as follows.

de; = (Sign(dc;®) * (Abs(dc;®) * LevelScale2(QSc, 0,0) + (1<< (15+QSc/6)))) >> (16+QSc/6)
withi,j=0,1 (8-306)

The 2x2 array f with elements f; and i, j = 0..1 is derived as follows.

_é 1ueolcOO de, el 1o

g‘-]'Uedclo dcll::ljgl' - :I-ul’<I (&30
Scaling of the elements f;; of f is performed as follows.
- If QScisgreater than or equal to 6, the cy() are derived by
ool j * 2+i)=(f;* LevelScale(QS %6,0,0)) << (QSc/6-1) withi, j=0,1 (8-308)
- Otherwise (QSc isless than 6), the cy() are derived by
ool j * 2+i) = (f;* LevelScale(QS %6,0,0)) >> 1 withi,j=0,1 (8-309)

DRAFT ITU-T Rec. H.264 (2002 E) 137

8.6.2 SPand Sl dlicedecoding process for switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp_for_switch_flag is equal to 1 and
when decoding SI macroblock typein Sl dlices.

Inputs to this process are the prediction residual transform coefficient levels and the prediction sample arrays pred,,
predcy,, prede, for the current macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

8.6.21 Lumatransform coefficient decoding process

Inputs to this process are prediction luma samples pred, and the luma prediction residual transform coefficient levels,
LumalL evel.

Outputs of this process are the decoded luma samples of the current macroblock prior to the deblocking filter process.

The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.1, is transformed according to Equation
8-290 to produce transform coefficients ¢”. These transform coefficients are then quantised with the quantisation
parameter QSy, as follows:

¢S = (Sign(c”) * (Abs(c”)* LevelScale2(QSy %6,i,j) + (1<<(14+QS,/6))))>> (15+QS,/6)
withi, j =0..3 (8-310)

The inverse transform coefficient scanning process as described in subclause 85.4 is invoked with
LumalLevel[lumadx4BIkidx] asthe input and the two-dimensional array ¢ with elements c;j" as the output.
The 4x4 array ¢ with elements ¢;; with i, j = 0..3 is derived as follows.

cj=¢j +¢;° withi, j=0.3 (8-311)
The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢ as the
input and r as the output.

The 4x4 array u with elements u; is derived as follows.
Uij = Cllpl(Fij) with |,] =0.3 (8-312)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with lumadx4Blkldx, u
astheinput and S' as the output.

8.6.22 Chromatransform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

Outputs of this process are the decoded chroma samples of the current macroblock prior to the deblocking filter process.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chromadx4Blkldx with chromadx4BIkldx equal
to 0..3, the following applies.

1. The 4x4 array p with elements p; with i, j = 0.3 is derived as in subclause 8.6.1.2, is transformed according to
Equation 8-290 to produce transform coefficients c’(chromadx4Blkidx). These transform coefficients are then
guantised with the quantisation parameter QSc, with i, j = 0..3 except for the combination i = 0, j = 0 asfollows. The
processing of co”(chromadx4Blkldx) is described below in this subclause.

G;i° = (Sign(¢;’(chromadx4Blkidx)) * (8-313)
(Abs(c;°(chromadx4Blkldx)) * LevelScale2(QSc % 6,1i,j) +(1<<(14+QSc/6))))>>(15+QS:/6)

- The variable chromalList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromalList] k]
with index k = 1..15 are specified as follows.

chromaList[k] = ChromaACLevel[iCbCr][chromadx4Blkldx][k- 1] (8-314)

- Theinverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromaList as the
input and the two-dimensional array c'(chromadx4Blkldx) with elements c;'(chromadx4Blkldx) as the output.

138 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- The 4x4 array c(chromadx4Blklidx) with elements c;(chromadx4Blkldx) with i, j = 0.3 except for the
combinationi =0, j = 0 isderived as follows. The derivation of coy(chromadx4Blkldx) is described below.

c;j(chromadx4Blkldx) = ¢;(chromadx4Blkldx) + ¢;° (8-315)

- The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
c(chromadx4Blkldx) asthe input and r as the outpuit.

- The4x4 array u with elements u; is derived as follows.
uij = Cllpl(Fij) with |,] =0.3 (8—316)

- The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chromadx4BIkldx, u astheinput and S' as the output.

The derivation of the DC transform coefficient level cqoo(chromadx4BIkldx) is specified as follows. The DC transform
coefficients of the 4 prediction 4x4 chroma blocks of the current component of the macroblock, cy®(chromadx4Blkidx),
are assembled into a 2x2 matrix, and a 2x2 transform is applied to the DC transform coefficients of these blocks
according to Equation 8-304 resulting in DC transform coefficients dc;;.

These DC transform coefficients are then quantised with the quantisation parameter QS, as given by:

dc;®= (Sign(dc;®) * (Abs(dc;”) * LevelScale2(QSc %6, 0,0) + (1<< (15+QSc/6)))) >>
(16+QSc/6) withi,j=0,1 (8-317)

The parsed chroma DC prediction residual transform coefficients, ChromaDCLevel[iCbCr][k] with k = 0..3 are added
to these quantised DC transform coefficients of the prediction block, as given by:

dc;" = dg;®+ ChromaDCLevel[iCbCr][j * 2+i] withi,j=0,1 (8-318)

The 2x2 array f with elementsf; and i, j = 0..1 is derived using Equation 8-307.

The 2x2 array f with elements f; and i, j = 0..1 is copied as follows.

Coo(j * 2+1i)=f; withi,j=0,1 (8-319)

8.7 Deblocking filter process

A conditional filtering shall be applied to all 4x4 block edges of a picture, except edges at the boundary of the picture
and any edges for which the deblocking filter process is disabled by disable_deblocking_filter_idc, as specified below.
This filtering process shall be performed on a macroblock basis, with all macroblocks in a picture processed in order of
increasing macroblock addresses. Prior to the operation of the deblocking filter process for each macroblock, the
deblocked samples of the macroblock or macroblock pair above (if any) and the macroblock or macroblock pair to the
left (if any) of the current macroblock shall be available.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock, vertical
edges are filtered first, from left to right, and then horizontal edges are filtered from top to bottom. The luma deblocking
filter process is performed on four 16-sample edges and the deblocking filter process for each chroma components is
performed on two 8-sample edges, for the horizontal direction as shown on the left side of Figure 8-9 and for the vertical
direction as shown on the right side of Figure 8-9. Sample values above and to the left of the current macroblock that
may have already been modified by the deblocking filter process operation on previous macroblocks shall be used as
input to the deblocking filter process on the current macroblock and may be further modified during the filtering of the
current macroblock. Sample values modified during filtering of vertical edges are used as input for the filtering of the
horizontal edges for the same macroblock.

DRAFT I TU-T Rec. H.264 (2002 E) 139

16*16 Macroblock 16*16 Macroblock

—_————f————f———— P ——
[I Il | | |
I I I >		
I I : : : *I\ Horizontal edges		
—_——	A ———————— (luma)	
I		
:		Horizontal edges
(chroma)		
I |
1

Vertical edges Vertical edges
(luma) (chroma)

Figure 8-9 —Boundariesin a macroblock to befiltered (luma boundaries shown with solid lines and chroma

boundaries shown with dashed lines)

For each macroblock in ascending order of mbAddr, the following applies.

1. The variables fieldModeMbFlag, filterinternalEdgesHlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are
derived asfollows.

140

The variable fieldModeMbFlag is derived as follows.
If any of the following conditionsis true, fieldModeMbFlag is set equal to 1.

field_pic flagisequal to1
MbaffFrameFlag is equal 1 and the macroblock mbAddr is afield macroblock

Otherwise, fieldModeMbFlag is set equal to 0.
The variable filterInternal EdgesFlag is derived as follows.
If disable_deblocking_filter_idc for the slice that contains the macroblock mbAddr is equal to 1, the variable

filterInternal EdgesFlag is set equal to O;

Otherwise (disable_deblocking_filter_idc for the slice that contains the macroblock mbAddr is not egual

to 1), the variable filterInternal EdgesHlag is set equal to 1.

The variablefilterLeftMbEdgeFlag is derived as follows.
If any of the following conditionsistrue, the variable filterL eftMbEdgeFlag is set equal to 0.

the left vertical macroblock edge of the macroblock mbAddr represents a picture boundary
disable_deblocking_filter_idc for the dlice that contains the macroblock mbAddr is equal to 1

disable_deblocking_filter_idc for the slice that contains the macroblock mbAddr is equal to 2 and the left
vertical macroblock edge of the macroblock mbAddr represents a slice boundary

Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.
The variable filterTopMbEdgeFlag is derived as follows.
If any of the following conditionsis true, the variable filterTopMbEdgeFlag is set equal to 0.

the top horizontal macroblock edge of the macroblock mbAddr represents a picture boundary
disable_deblocking_filter_idc for the slice that contains the macroblock mbAddr is equal to 1

disable _deblocking_filter_idc for the dlice that contains the macroblock mbAddr is equal to 2 and the top
horizontal macroblock edge of the macroblock mbAddr represents a slice boundary

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

2. Given the variables fieldM odeM bFlag, filterInternal EdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag the
deblocking filtering is controlled as follows.

When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical luma edge is specified as follows.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldM odeFilteringFlag = fieldModeMbFlag, and (XE, YE) = (0, K) with k = 0..15 asinput and S as output.

When filterlnternal EdgesFlag is equal to 1, the filtering of the internal vertical luma edgesis specified as follows.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = O, vertica EdgeFlag = 1,
fieldM odeFilteringFlag = fieldModeMbFlag, and (XEy, YEi) = (4, k) with k = 0..15 asinput and S as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldM odeFilteringFlag = fieldModeMbFlag, and (XEy, YEi) = (8, k) with k = 0..15 asinput and S as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeFilteringFlag = fieldModeMbFlag, and (XE, YE() = (12, k) with k= 0..15 as input and S| as
output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows.

If MbaffFrameFlag is equal to 1, (mbAddr % 2) is equal to O, mbAddr is greater than or equa to
2* PicWidthinMbs, the macroblock mbAddr is a frame macroblock, and the macroblock
(mbAddr - 2 * PicwidthinMbs + 1) is afield macroblock, the following applies.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = O, vertical EdgeFlag
=0, fieldModeFilteringFlag = 1, and (XEy, YE,) = (k, 0) with k = 0..15 asinput and S| as output.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = O, vertical EdgeFlag
=0, fieldModeFilteringFlag = 1, and (XEy, YE,) = (k, 1) with k = 0..15 asinput and S| as output.

Otherwise, the process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = O,
vertica EdgeFlag = 0, fieldM odeFilteringFlag = fieldModeMbFlag, and (XEy, YE,) = (k, 0) with k= 0..15 as
input and S as output.

When filterInternal EdgesFlag is equa to 1, the filtering of the internal horizontal luma edges is specified as
follows.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, vertical EdgeFlag = 0,
fieldM odeFilteringFlag = fieldModeMbFlag, and (XEy, YEi) = (K, 4) with k = 0..15 asinput and S as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, vertical EdgeFlag = 0,
fieldM odeFilteringFlag = fieldModeMbFlag, and (XE, YE) = (k, 8) with k = 0..15 asinput and S| as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, vertical EdgeFlag = 0,
fieldM odeFilteringFlag = fieldModeMbFlag, and (xEy, YE,) = (K, 12) with k= 0..15 as input and S| as
output.

For both chroma componentsiCbCr = 0 and 1, the following applies.

When filterL eftMbEdgeFlag is equal to 1, the filtering of the left vertical chroma edge is specified as follows.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
vertica EdgeFlag = 1, fieldModeFilteringFlag = fieldM odeMbFlag, and (XEy, YE) = (0, k) withk =0..7 as
input and S with C being replaced by Cb for iChCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

When filterInternal EdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified as
follows.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 1, fieldM odeFilteringFlag = fieldModeMbFlag, and (XEy, YEK) = (4, k) withk =0..7 as
input and S with C being replaced by Cb for iChCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified as
follows.

DRAFT ITU-T Rec. H.264 (2002 E) 141

- If MbaffFrameFlag is equal to 1, (mbAddr % 2) is equal to 0, mbAddr is greater than or equal to
2* PicWidthinMbs, the macroblock mbAddr is a frame macroblock, and the macroblock (mbAddr —
2* PicwidthinMbs + 1) is afield macroblock, the following applies.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
vertica EdgeFlag = 0, fieldModeFilteringFlag = 1, and (XEy, YEL) = (k, 0) with k = 0..7 as input and
S¢c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
vertica EdgeFlag = 0, fieldModeFilteringFlag = 1, and (XEy, YEL) = (k, 1) with k= 0..7 as input and
S¢c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

- Otherwise, the process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
vertica EdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (XEy, YEx) = (k, 0) with k=0..7 as
input and S¢ with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

- When filterInternal EdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is specified as
follows.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, fieldM odeFilteringFlag = fieldModeMbFlag, and (XEy, YE) = (K, 4) with k=0..7 as
input and S with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

NOTE - When field mode filtering (fieldModeFilteringFlag is equal to 1) is applied across the top horizontal
edges of a frame macraoblock, this vertical filtering across the top or bottom macroblock boundary may involve
some samples that extend across an internal block edge that is also filtered internally in frame mode.

NOTE — In all cases, 3 horizontal luma edges, 1 horizontal chroma edge for Ch, and 1 horizontal chroma edge for
Cr arefiltered that are internal to a macroblock. When field mode filtering (fieldModeFilteringFlag is equal to 1)
is applied to the top edges of a frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and 2
horizontal chroma edges for Cr between the frame macroblock and the above macroblock pair are filtered using
field mode filtering, for a total of up to 5 horizontal luma edges, 3 horizontal chroma edges for Ch, and 3
horizontal chroma edges for Cr filtered that are considered to be controlled by the frame macroblock. In all other
cases, at most 4 horizontal luma, 2 horizontal chroma edges for Ch, and 2 horizontal chroma edges for Cr are
filtered that are considered to be controlled by a particular macroblock.

Finally, the arrays S|, Sy, S are assigned to the arrays S, Scn, Scr (Which represent the decoded picture),
respectively.

8.7.1 Filtering processfor block edges

Input to this process are mbAddr, chromaEdgeFl ag, the chroma component index iCbCr (when chromaEdgeFlag is equal
to 1), verticalEdgeFlag, fieldModeFilteringFlag, and a set of sixteen luma (when chromaEdgeFlag is equal to 0) or eight
chroma (when chromaEdgeFlag is equal to 1) sample locations (XEy, YEy), with k =0 .. nE - 1, expressed relative to the
upper left corner of the macroblock mbAddr. The set of sample locations (XEy, YEi) represent the sample locations
immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below a horizontal edge
(when vertical EdgeFlag is equal to 0).

The variable nE is derived as follows.

- If chromaEdgeFlag isequal to 0, nE is 16;

- Otherwise (chromaEdgeFlag is equal to 1), nE is 8.

Let s be avariable specifying aluma or chroma sample array, be derived as follows.

- If chromaEdgeFlag is equal to 0, s' represents the luma sample array S, of the current picture.

- Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to O, s represents the chroma sample array S¢, of the
chroma component Cb of the current picture.

- Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), S' represents the chroma sample array S, of the
chroma component Cr of the current picture.

The variable dy is derived as follows.
- If fieldModeFilteringFlag is equal to 1 and MbaffFrameFlag isequal to 1, dy is set equal to 2.
- Otherwise (fieldModeFilteringFlag is equal to 0 or MbaffFrameFlag is equal to 0), dy is set equal to 1.

The position of the upper-left luma sample of the macroblock mbAddr is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with mbAddr as input and the output being assigned to (xP, yP).

142 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

p3

p2

p1

pO

q0

q1

g2

q3

DRAFT ITU-T Rec. H.264 (2002 E)

143

The process specified in subclause 8.7.2.2 is invoked with po, 0o, P1, g1, chromaEdgeFlag, and bS as input, and the output
is assigned to filterSamplesFlag, indexA, a, and b.

Depending on the variable filterSamplesH ag, the following applies.
- If filterSamplesFlag is equal to 1, the following applies.

- If bSislessthan 4, the process specified in subclause 8.7.2.3 isinvoked with p; and ¢ (i = 0..3), chromaEdgeFlag,
bS, b, and indexA given as input, and the output is assigned to p'; and q; (i = 0..2).

- Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with p, and g (i = 0..3),
chromaEdgeFlag, a, and b given asinput, and the output is assigned to p’ and g (i = 0..2).

- Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p; and q; (i = 0..2) are replaced by the
corresponding input samples p; and g;:

fori=0..2, Pi=pi (8-328)
fori=0.2, gi=4q (8-329)

8.7.2.1 Derivation processfor the luma content dependent boundary filtering strength

Inputs to this process are the input sample values p, and gy of a single set of samples across an edge that is to be filtered
and vertical EdgeFl ag.

Output of this processisthe variable bS.
L et the variable mixedModeEdgeFlag be derived as follows.

- If MbaffFrameFlag is equal to 1 and the samples pp and gy are in different macroblock pairs, one of which isafield
macroblock pair and the other is a frame macroblock pair, mixedM odeEdgeFlag is set equal to 1

- Otherwise, mixedModeEdgeFlag is set equal to 0.
The variable bSis derived as follows.

- If the block edge is a'so a macroblock edge and any of the following conditions are true, a value of bS equal to 4
shall be the output:

- the samples py and ¢, are both in frame macroblocks and either of the samples pg or g is in a macroblock
coded using an Intra macroblock prediction mode

- MbaffFrameFlag is equal to 1 or field_pic flag is equal to 1, and verticalEdgeFlag is equal to 1, and either of
the samples po or qg isin amacroblock coded using an Intra macroblock prediction mode.

- Otherwiseg, if any of the following conditions are true, a value of bS equal to 3 shall be the outpuit:

- mixedModeEdgeFlag is equal to 0 and either of the samples py or gg is in a macroblock coded using an Intra
macroblock prediction mode

- mixedModeEdgeFlag is equal to 1, vertical EdgeFlag is equal to 0, and either of the samples py or gg isin a
macroblock coded using an Intra macroblock prediction mode

- Otherwisg, if the following condition is true, avalue of bS equal to 2 shall be the output:

- the 4x4 luma block containing sample po or the 4x4 luma block containing sample ¢, contains non-zero
transform coefficient levels

- Otherwisg, if any of the following conditions are true, a value of bS equal to 1 shall be the output:
- mixedModeEdgeFlag isequal to 1

- mixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock partition containing the sample p
different reference pictures or a different number of reference pictures are used than for the prediction of the
macroblock partition containing the sample qp.

- mixedModeEdgeFlag is equa to O and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample py and one motion vector is used to predict the macroblock/sub-macraoblock
partition containing the sample g, and the absolute difference between the horizontal or vertical component of
the motion vector used is greater than or equal to 4 in units of quarter luma frame samples.

- mixedModeEdgeFlag is equal to 0 and two motion vectors and two different reference pictures are used to
predict the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same

144 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

two reference pictures are used to predict the macroblock/sub-macroblock partition containing the sample g
and the absolute difference between the horizontal or vertical component of a motion vector used in the
prediction of the two the macroblock/sub-macroblock partitions for the same reference picture is greater than
or equal to 4 in units of quarter luma frame samples.

- mixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict
the macroblock/sub-macroblock partition containing the sample py and two motion vectors for the same
reference picture as used to predict the macroblock/sub-macraoblock partition containing the sample p, are used
to predict the macroblock/sub-macroblock partition containing the sample ¢, and both of the following
conditions are true:

- The absolute difference between the horizontal or vertical component of list 0 motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4 in quarter luma
frame samples or the absolute difference between the horizontal or vertical component of the list 1 motion
vectors used in the prediction of the two macroblock/sub-macroblock partitions is greater than or equal
to 4 in units of quarter luma frame samples.

- The absolute difference between the horizontal or vertical component of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample py and the list 1 motion
vector used in the prediction of the macroblock/sub-macroblock partition containing the sample qq is
greater than or equal to 4 in units of quarter luma frame samples or the absolute difference between the
horizontal or vertical component of the list 1 motion vector used in the prediction of the macroblock/sub-
macroblock partition containing the sample py and list 0 motion vector used in the prediction of the
macrobl ock/sub-macroblock partition containing the sample qq is greater than or equal to 4 in units of
quarter luma frame samples.

NOTE — A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter
lumafield samples

- Otherwise, avalue of bSequal to 0 shall be the output.

8.7.2.2 Derivation processfor thethresholdsfor each block edge

Inputs to this process are the input sample values py, o, p1 and g, of a single set of samples across an edge that is to be
filtered, chromaEdgeFl ag, and bS, for the set of input samples, as specified in 8.7.2.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the
value of indexA, and the values of the threshold variables a and b.

Let gP, and gP, be variables specifying quantisation parameter values for the macroblocks containing the samples p, and
o, respectively. The variables gP, (with z being replaced by p or q) are derived as follows.

- If chromaEdgeFlag is equal to O, the following applies.
- If the macroblock containing the sample zgisan |_PCM macroblock, gP, isset to 0.

- Otherwise (the macroblock containing the sample z, is not an |_PCM macroblock), gP; is set to the value of QPy
of the macroblock containing the sample z,.

- Otherwise (chromaEdgeFlag is equal to 1), the following applies.

- If the macroblock containing the sample z, is an |_PCM macroblock, gP, is set to the value of QPc that
corresponds to avalue of 0 for QPy as specified in subclause 8.5.5.

- Otherwise (the macroblock containing the sample z, is not an I_PCM macroblock), P, is set to the value of QPc
that corresponds to the value QPy of the macroblock containing the sample z, as specified in subclause 8.5.5.

Let gPav be a variable specifying an average quantisation parameter. It is derived as follows.
gPav =(gP,+ P+ 1)>>1 (8-330)

NOTE - In SP and Sl dlices, gP,, is derived in the same way as in other dice types. QSy from Equation 7-17 is not used in the
deblocking filter.

Let indexA be avariable that is used to access the a table (Table 8-14) as well as the tc, table (Table 8-15), which is used
in filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used to
access the b table (Table 8-14). The variables indexA and indexB are derived as follows, where the vaues of
FilterOffsetA and FilterOffsetB are the values of those variables specified in subclause 7.4.3 for the dlice that contains
the macroblock containing sample q..

indexA = Clip3(0, 51, GP,, + FilterOffsetA) (8-331)

DRAFT ITU-T Rec. H.264 (2002 E) 145

indexB = Clip3(0, 51, qP,, + FilterOffsetB) (8-332)

The threshold variables a and b are specified in Table 8-14 depending on the values of indexA and indexB.
The variable filterSamplesFlag is derived by

filterSamplesFlag = (bS!=0 && Abs(po—0o) <a && Abs(pi—po)<b && Abs(qi—)<b) (8-333)

Table 8-14 — Derivation of indexA and indexB from offset dependent threshold variablesa and b

indexA (for a) or indexB (for b)

0|1|2|3|4|5|6|7|8|9|10(11(12|13|14|15(16|17|18|19(20|21|22|23|24|25

a|J|ojojo0jojojofojojojofo0ojojojo0ofojo0|4|4(5|6|7|8(9|10|12|13

b J0jojojofo|j0jo0ojf0j0jO0O|jOjO|O|O0O|0O|0O0|2|2]|2|3]|3|3|3|4|4]|4

Table 8-14 (concluded) — Derivation of indexA and indexB from offset dependent threshold variablesa and b

indexA (for a) or indexB (for b)

261272812930 (31(32|33|3435(36|37|38[39(40|41|42|43|44|45|46|47 (4849|5051

a |15(17|20|22|25[28|32|36|40|45|50|56|63|71|80|90|101|113|127|144|162|182|203|226|255|255

b 6677|889 |9|10{10(11|11|12|12|13(13|14|14|15(15|16|16|17 (17|18 18

8.7.2.3 Filtering processfor edgeswith bSlessthan 4

Inputs to this process are the input sample values p; and g; (i = 0..3) of asingle set of samples across an edge that isto be
filtered, chromaEdgeFlag, bS, b, and indexA, for the set of input samples, as specified in 8.7.2.

Outputs of this process are the filtered result sample values p'; and q; (i = 0..2) for the set of input sample values.

The filtered result samples p'y and gy are derived by

D=Clip3(—tc, tc, ((((do—po) <<2) +(p1—01) +4)>>3)) (8-334)
P'o=Clipl(po+D) (8-335)
do=Clipl(go—D) (8-336)

where the threshold t¢ is determined as follows.

- If chromaEdgeFlag isequal to O,

tc=tcot((a8<b)?1:0)+((aq<b)?1:0) (8-337)
- Otherwise (chromaEdgeFlag is equal to 1),

tc=tgo+1 (8-338)

The threshold te is specified in Table 8-15 depending on the values of indexA and bS.
Let &, and a, be two threshold variables specified by

3 = Abs(p2—po) (8-339)
3 =Abs(0, — o) (8-340)

Thefiltered result sample p'; is derived as follows

- If chromaEdgeFlag is equal to 0 and &, islessthan b,

146 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
P = P1+ Clip3(o, too, (P2 + ((Po+ Qo+ 1) >>1) —(pr<<1)) >> 1) (8-341)

- Otherwise (chromaEdgeFlag is equal to 1 or &, is greater than or equal to b),
pP1=pP1 (8-342)

Thefiltered result sample g'; is derived as follows

- If chromaEdgeFlag is equal to 0 and & islessthan b,

q1=01 + Clip3(—tco, teo, (G + ((Po+ Go+1)>>1)—(qu<<1)) >> 1) (8-343)
- Otherwise (chromaEdgeFlag is equal to 1 or &, is greater than or equal to b),

1= (8-344)
Thefiltered result samples p*, and g, are always set equal to the input samples p, and qy:

P2 = P2 (8-345)

2= 0 (8-346)

Table 8-15 - Value of filter clipping variabletcq asa function of indexA and bS

indexA

0/1({2|3(4/5/6|7]8,9|10/1112(13|14|15/16(17|18|19|20|21|22|23|24|25

bS=1 o, 0/0/jO0O/O/O|jO|]O}OJO|O|O}]O|O|0O|O|]O|O|O|O|O|O|O|1|1]|1
bS=2 o, 0/0/O0O/O/O|O|]O}OJO|O|O}]O|O|0O|O|]O|O|O|O|O|1|2|1|1]|12
bS=3 o/o,0/0/0/0/0|0O)j0O|O|OJO0O|O|jO/O0O|jO|jOf2|2 1|12 |11 |1 1

Table 8-15 (concluded) — Value of filter clipping variable tco asa function of indexA and bS

indexA

26|27128|29/30|31|32|33|34|35(36(37|38[39|40|41|42|43 |44 45|46 474849 |50 |51

bS=1 1714121111, 2|2|2|2(3/3|3|4|4,4|/5|6|6|7|8|9/|10(/11|13
bS=2 1,111,122 |2|2|3|3|3/4/4|5/5|/6|7|8]8|10/11|12|13|15/|17
bS=3 1/2/2(2,2/3|3|3|/4|4|/4|5/6|6|7|8|9(10/11|13|14/16|18|20(23|25

8.7.2.4 Filtering processfor edgesfor bSequal to 4

Inputs to this process are the input sample values p; and g; (i = 0..3) of asingle set of samples across an edge that isto be
filtered, the variable chromaEdgeFlag, and the values of the threshold variables a and b for the set of samples, as
specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values p'; and g (i = 0..2) for the set of input sample values.
Let &, and &, be two threshold variables as specified in Equations 8-339 and 8-340, respectively, in subclause 8.7.2.3.
Thefiltered result samples p’; (i = 0..2) are derived as follows.
- If chromaEdgeFlag is equal to 0 and the following condition holds,
a<b && Abs(po—qo)<((a>>2)+2) (8-347)

then the variables p'o, p'1, and p', are derived by

Po=(P2+2*pr+2*po+2*qo + 1 +4) >>3 (8-348)

DRAFT ITU-T Rec. H.264 (2002 E) 147

P1=(p2+pr+tpotgo+2)>>2 (8-349)
P2=(2"p3+ 3P+ pr+tpo+dot+4)>>3 (8-350)

- Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-347 does not hold), the variables p'y, p'1, and
p'; are derived by

Po=(2"pr+po+h+2)>>2 (8-351)
P1=P1 (8-352)
P2 = P2 (8-353)

Thefiltered result sasmples g (i = 0..2) are derived as follows.

- If chromaEdgeFlag is equal to 0 and the following condition holds,
a<b && Abs(po—ao) <((a>>2)+2) (8-354)

then the variables q'o, '1, and ', are derived by

Qo=(P1+2*Po+2*Co+2*q1 + G+ 4) >>3 (8-355)
d1=(Po+ Qo+ Qi+ qp+2)>>2 (8-356)
q2=(2"0s+3* Qe+ Q1+ o+ Po+4) >>3 (8-357)

- Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-354 does not hold), the variables g, q'1, and
g, are derived by

Qo=(2*Q+ Qo+ pr+2)>>2 (8-358)

1= (8-359)

q2=0 (8-360)
9 Parsing process

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(Vv), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2), or ag(Vv) (see subclause 9.3).

9.1 Par sing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equa to ue(v),
me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5, this process is invoked only when
entropy_coding_mode_flag isequal to 0.

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated
Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current
location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal
to 0. This process shall be equivalent to the following:

leadingZeroBits = -1;
for(b =0; !b; leadingZeroBits++)
b=read hits(1)

The variable codeNum is then assigned as follows:

148 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

codeNum = 2'®nezerBits _ 7 4 read bits(leadingZeroBits)

where the value returned from read bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into “prefix” and “ suffix” bits. The
“prefix” bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are
shown as either 0 or 1 in the bit string column of Table 9-1. The “suffix” bits are those bits that are parsed in the
computation of codeNum and are shown as x; in Table 9-1, with i being in the range O to leadingZeroBits - 1, inclusive.
Each x; can take on values O or 1.

Table 9-1 —Bit stringswith “prefix” and “ suffix” bits and assignment to codeNum ranges (infor mative)

Bit string form Range of codeNum
1 0
0 1 xq 1-2
00 1 x; Xg 3-6
000 1 x, X1 Xp 7-14
0000 1 X3 X, X1 Xg 15-30
000001 x4 X3 Xp X1 Xp 31-62

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (infor mative)

Bit string codeNum
1 0
010 1
011 2
00100 3
00101 4
00110 5
00111 6
0001000 7
00010012 8
0001010 9

Depending on the descriptor, the value of a syntax element is derived as follows.
- If the syntax element is coded as ue(Vv), the value of the syntax element is equal to codeNum.

- Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the
mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

- Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the
mapping process for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

DRAFT ITU-T Rec. H.264 (2002 E) 149

- Otherwise (the syntax element is coded as te(v)), the range of the syntax element shall be determined first. The range
of this syntax element may be between 0 and x, with x being greater than or equal to 1 and is used in the derivation
of the value of a syntax element as follows

- If x is greater than 1, codeNum and the value of the syntax element shall be derived in the same way as for
syntax elements coded as ue(v)

- Otherwise (x isequal to 1), the parsing process for codeNum which is equal to the value of the syntax element
is given by a process equivaent to:

b =read bits(1)
codeNum=1!b

9.1.1 Mapping process for signed Exp-Golomb codes
Input to this process is codeNum as specified in subclause 9.1.
Output of this processis avalue of asyntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the
assignment rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element value
0 0
1 1
2 -1
3 2
4 -2
5 3
6 -3
k (1)*** Ceil(k+2)

9.1.2 Mapping processfor coded block pattern
Input to this process is codeNum as specified in subclause 9.1.
Output of this processis avalue of the syntax element coded_block_pattern coded as me(v).

Table 9-4 shows the assignment of coded_block_pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4 or Inter.

Table 9-4 — Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

codeNum coded_block_pattern
Intra_4x4 Inter
0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8

150 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

6 29 32
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15
12 39 a7
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 a4
24 28 33
25 35 34
26 37 36
27 42 40
28 a4 39
29 1 43
30 2 45
31 4 46
32 8 17
33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26
39 22 28
40 25 23
41 32 27

DRAFT ITU-T Rec. H.264 (2002 E)

151

42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 41 41

9.2 CAVLC parsing processfor transform coefficient levels

This process is invoked when parsing syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.1 and when
entropy_coding_mode_flag isequal to 0.

Inputs to this process are bits from dlice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index lumadx4BIkldx or the chroma block index chromadx4Blkldx of the current block
of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
lumadx4Blkldx or the chroma block with block index chromadx4BIkldx.

The processis specified in the following ordered steps:
1. All transform coefficient levels, with indices from 0 to maxNumCoeff - 1, in the list coeffLevel are set equal to O.

2. The total number of non-zero transform coefficient levels Total Coeff(coeff token) and the number of trailing one
transform coefficient levels TrailingOnes(coeff_token) are derived by parsing coeff token (see subclause 9.2.1) as
follows.

- If the number of non-zero transform coefficient levels Total Coeff(coeff token) isequal to O, thelist coeffLevel
containing O values is returned and no further step is carried out.

- Otherwise, the following steps are carried out.

a. The non-zero transform coefficient levels are derived by parsing trailing_ones sign flag, level _prefix, and
level suffix (see subclause 9.2.2).

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived
by parsing total_zeros and run_before (see subclause 9.2.3).

c. Thelevel and run information are combined into the list coeffLevel (see subclause 9.2.4).

9.21 Parsing processfor total number of transform coefficient levelsand trailing ones

Inputs to this process are bits from dice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index lumadx4BIkldx or the chroma block index chromadx4Blkldx of the current block
of transform.

Outputs of this process are Total Coeff(coeff_token) and TrailingOnes(coeff_token).

The syntax element coeff token is decoded using one of the five VLCs specified in five right-most columns of
Table 9-5. Each VLC specifies both Total Coeff(coeff token) and TrailingOnes(coeff_token) for a given codeword
coeff_token. VL C selection is dependent upon a variable nC that is derived as follows.

- If the CAVLC parsing processisinvoked for ChromaDCLevel, nC is set equal to —1,

- Otherwise, the following applies.
- Whenthe CAVLC parsing process isinvoked for Intral6x16DCLevel, lumadx4Blkldx is set equal to O.
- Thevariables blkA and blkB are derived as follows.

- If the CAVLC parsing process is invoked for Intraléx16DCLevel, Intral6x16ACLevel, or Lumalevel, the
process specified in subclause 6.4.7.3 is invoked with lumadx4BIkldx as the input, and the output is assigned
to mbAddrA, mbAddrB, lumadx4BIkidxA, and lumadx4BlkldxB. The 4x4 luma block specified by
mbAddrA\lumadx4BIkldxA is assigned toblkA, and the 4x4 Iluma block specified by
mbAddrB\lumadx4BIkldxB is assigned to blkB.

152 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in subclause
6.4.7.4 is invoked with chromadx4Blkldx as input, and the output is assigned to mbAddrA, mbAddrB,
chromadx4BlkldxA, and chromadx4BlkldxB. The 4x4 chroma block specified by
mbAddrA\iCbCr\chromadx4BIkldxA is assigned to blkA, and the 4x4 chroma block specified by
mbAddrB\i CbCr\lumadx4BIkldxB is assigned to blkB.

- Let nA and nB be the number of non-zero transform coefficient levels (given by Total Coeff(coeff_token)) in
the block of transform coefficient levels bIkA located to the left of the current block and the block of transform
coefficient levels blkB located above the current block, respectively.

- With N replaced by A and B, in mbAddrN, bIkN, and nN the following applies.

If any of the following conditionsistrue, nN is set equal to 0.
- mbAddrN isnot available

- The current macroblock is coded using an Intra prediction mode, constrained_intra_pred flag is equal
to 1 and mbAddrN is coded using Inter prediction and slice data partitioning isin use (nal_unit_typeisin
the range of 2 to 4, inclusive).

- The macroblock mbAddrN has mb_type equal to P_Skip or B_Skip

- All AC residua transform coefficient levels of the neighbouring block bIkN are equal to O due to the
corresponding bit of CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0

Otherwise, if mbAddrN isan |_PCM macroblock, nN is set equal to 16.

Otherwise, nN is set equal to the value Total Coeff(coeff_token) of the neighbouring block bIkN.

NOTE - The values nA and nB that are derived using Total Coeff(coeff_token) do not include the DC transform
coefficient levelsin Intra 16x16 macroblocks or DC transform coefficient levels in chroma blocks, because these
transform coefficient levels are decoded separately. When the block above or to the left belongs to an Intra 16x16
macroblock, or is achromablock, nA and nB is the number of decoded non-zero AC transform coefficient levels.

NOTE - When parsing for Intral6x16DCLevel, the values nA and nB are based on the number of non-zero
transform coefficient levels in adjacent 4x4 blocks and not on the number of non-zero DC transform coefficient
levelsin adjacent 16x16 blocks.

- Given the values of nA and nB, the variable nC is derived as follows.

- If both mbAddrA and mbAddrB are available, the variable nC isset equal to (nA +nB + 1) >> 1.

- Otherwise (mbAddrA is not available or mbAddrB is not available), the variable nC is set equal to nA + nB.

The value of TotalCoeff(coeff token) resulting from decoding coeff_token shall be in the range of 0 to maxNumCoeff,

inclusive.

DRAFT I TU-T Rec. H.264 (2002 E) 153

Table 9-5 — coeff_token mapping to Total Coeff(coeff_token) and TrailingOnes(coeff token)

TrailingOnes Total Coeff 0<=nC <2 2<=nC < 4 4<=nC<8|8<=nC|nC==-1
(coeff_token) | (coeff_token)
0 0 1 11 1111 0000 11 01
0 1 0001 01 001011 001111 0000 00 0001 11
1 1 01 10 1110 000001 |1
0 2 0000 0111 0001 11 001011 0001 00 0001 00
1 2 0001 00 00111 01111 000101 | 000110
2 2 001 011 1101 000110 | 001
0 3 000000111 0000 111 001000 001000 0000 11
1 3 0000 0110 0010 10 01100 001001 | 0000011
2 3 0000 101 0010 01 01110 001010 0000 010
3 3 00011 0101 1100 001011 0001 01
0 4 0000 0001 11 0000 0111 0001111 001100 | 0000 10
1 4 000000110 0001 10 01010 001101 0000 0011
2 4 0000 0101 0001 01 01011 001110 | 0000 0010
3 4 0000 11 0100 1011 001111 | 0000 000
0 5 0000 0000 111 0000 0100 0001 011 0100 00 -
1 5 0000 0001 10 0000 110 01000 010001 | -
2 5 0000 0010 1 0000 101 01001 0100 10 -
3 5 0000 100 00110 1010 010011 -
0 6 0000 0000 0111 1 0000 0011 1 0001 001 010100 | -
1 6 0000 0000 110 0000 0110 001110 010101 -
2 6 0000 0001 01 0000 0101 001101 010110 | -
3 6 0000 0100 0010 00 1001 010111 | -
0 7 0000 0000 0101 1 0000 0001 111 0001 000 011000 -
1 7 0000 0000 0111 0 0000 0011 0 0010 10 011001 | -
2 7 0000 0000 101 0000 0010 1 0010 01 011010 -
3 7 0000 00100 0001 00 1000 011011 -
0 8 0000 0000 0100 0 0000 0001 011 0000 1111 011100 | -
1 8 0000 0000 01010 0000 0001 110 0001 110 011101 -
2 8 0000 0000 0110 1 0000 0001 101 0001 101 011110 | -
3 8 0000 0001 00 0000 100 01101 011111 | -
0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 -
1 9 0000 0000 0011 10 0000 0001 010 0000 1110 100001 | -
2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 -

154 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

3 9 0000 0000 100 0000 0010 0 0011 00 100011 | -
0 10 0000 0000 0010 11 0000 0000 1011 000001111 100100 | -
1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 100101 | -
2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 100110 | -
3 10 0000 0000 01100 0000 0001 100 0001 100 100111 | -
0 11 0000 0000 0001 111 | 0000 0000 1000 000001011 101000 | -
1 11 0000 0000 0001 110 | 0000 0000 1010 000001110 101001 | -
2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 101010 | -
3 11 0000 0000 0011 00 0000 0001 000 0000 1100 101011 | -
0 12 0000 0000 0001 011 (| 0000000001111 | 0OOOO 01000 101100 | -
1 12 0000 0000 0001 010 | 0000 000001110 | 000001010 101101 | -
2 12 0000 0000 0001 101 | 0000 000001101 | 000001101 101110 | -
3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 101111 | -
0 13 0000 0000 0000 1111 | 0000 000001011 | 0000001101 | 110000 | -
1 13 0000 0000 0000 001 | 0000 0000 01010 | 000000111 110001 | -
2 13 0000 0000 0001001 | 0000000001001 | 000001001 110010 | -
3 13 0000 0000 0001 100 | 0000 000001100 | 000001100 110011 | -
0 14 0000 0000 0000 1011 | 0000000000111 | 0000001001 | 110100 | -
1 14 0000 0000 0000 1110 | 0000 0000001011 | 0000001100 | 110101 | -
2 14 0000 0000 0000 1101 | 0000 000000110 | 0000001011 | 110110 | -
3 14 0000 0000 0001 000 | 0000 000001000 | 0000001010 | 110111 | -
0 15 0000 0000 0000 0111 | 0000 0000001001 | 0000000101 | 111000 | -
1 15 0000 0000 0000 1010 | 0000 0000 001000 | 0000001000 | 111001 | -
2 15 0000 0000 0000 1001 | 0000 0000001010 | 0000000111 | 111010 | -
3 15 0000 0000 0000 1100 | KOO0 000000001 | 0000000110 | 111011 | -
0 16 0000 0000 0000 0100 | 0000 00000001 11 | 0000000001 | 111100 | -
1 16 0000 0000 0000 0110 | 0000 0000 0001 10 | 0000000100 | 111101 | -
2 16 0000 0000 0000 0101 | 0000 0000000101 | 0O00000011 | 111110 | -
3 16 0000 0000 0000 1000 | 0000 0000 000100 | 0000000010 | 111111 | -

9.22 Parsing processfor level information

Inputs to this process are hits from dlice data, the number of non-zero transform coefficient levels
Total Coeff(coeff_token), and the number of trailing one transform coefficient levels TrailingOnes(coeff_token).

Output of this processisalist with name level containing transform coefficient levels.

Initially anindex i is set equal to 0. Then the following procedure is iteratively applied TrailingOnes(coeff _token) times
to decode the trailing one transform coefficient levels (if any):

- A 1-hit syntax element trailing_ones sign flag is decoded and evaluated as follows.

DRAFT I TU-T Rec. H.264 (2002 E) 155

- If trailing_ones sign flagisequal to O, thevalue +1 isassignedtolevel[i].
- Otherwise (trailing_ones _sign_flag isequal to 1), thevalue -1 isassigned to level[i].
- Theindex i isincremented by 1.
Following the decoding of the trailing one transform coefficient levels, avariable suffixLength isinitialised as follows.

- If TotalCoeff(coeff token) is greater than 10 and TrailingOnes(coeff token) is less than 3, suffixLength is set
equal to 1.

- Otherwise (TotalCoeff(coeff_token) is less than or equal to 10 or TrailingOnes(coeff token) is equa to 3),
suffixLength is set equal to 0.

The following procedure is then applied iteratively (Total Coeff(coeff token) — TrailingOnes(coeff_token)) times to
decode the remaining levels (if any):

- The syntax element level_prefix is decoded using the VL C specified in Table 9-6.

- Thevariable level SuffixSize is set equal to the variable suffixLength with the exception of the following two cases.
- Whenleve prefix isequal to 14 and suffixLength is equal to O, level SuffixSize is set equal to 4.

- Whenlevel prefix isequal to 15, level SuffixSizeis set equal to 12.

- Thesyntax element level _suffix is decoded as follows.

- If levelSuffixSize is greater than 0O, the syntax element level _suffix is decoded as unsigned integer representation
u(v) with level SuffixSize bits.

- Otherwise (level SuffixSize is equal to 0), the syntax element level _suffix shall be inferred to be equal to 0.
- A variablelevelCodeis set equal to (level_prefix << suffixLength) + level_suffix.
- When level_prefix isequal to 15 and suffixLength is equal to O, levelCode is incremented by 15.

- When the index i is equal to TrailingOnes(coeff_token) and TrailingOnes(coeff_token) is smaller than 3,
level Code is incremented by 2.

- Thevariablelevel[i] isderived asfollows.
- If levelCodeis an even number, the value (levelCode + 2) >> lisassigned tolevel[i].
- Otherwise, the value (-levelCode — 1) >> 1 isassigned to level[i].

- When suffixLength is equal to O, suffixLength is set equal to 1.

- When the absolute value of level[i] is greater than (3 << (suffixLength — 1)) and suffixLength is less than 6,
suffixLength isincremented by 1.

- Theindex i isincremented by 1.

156 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-6 — Codeword tablefor level_prefix

level prefix | bit string

1

01

001

0001

0000 1

0000 01

0000 001

0000 0001

0000 0000 1

0000 0000 01

0000 0000 001
0000 0000 0001
0000 0000 0000 1
0000 0000 0000 01
0000 0000 0000 001
0000 0000 0000 0001

© (00 N oo |0 | W |IN [k |O

=
o

=
=

[EEY
N

=
w

'—\
>

=
(3]

9.23 Parsing processfor run information

Inputs to this process are bhits from dlice data, the number of non-zero transform coefficient levels
Total Coeff(coeff _token), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this processis alist of runs of zero transform coefficient levels preceding non-zero transform coefficient levels
called run.

Initially, anindex i is set equal to 0.
The variable zerosLeft is derived as follows.

- If the number of non-zero transform coefficient levels Total Coeff(coeff token) is equal to the maximum number of
non-zero transform coefficient levels maxNumCoeff, avariable zerosL eft is set equal to 0.

- Otherwise (the number of non-zero transform coefficient levels Total Coeff(coeff _token) is less than the maximum
number of non-zero transform coefficient levels maxNumCoeff), total_zeros is decoded and zerosL eft is set equal to
itsvalue.

The VLC used to decode total_zerosis derived as follows:

- If maxNumCoeff is equal to 4 one of the VLCs specified in Table 9-9 is used.

- Otherwise (maxNumCoeff is not equal to 4), VLCsfrom Table 9-7 and Table 9-8 are used.
The following procedure is then applied iteratively (Total Coeff(coeff token) —1) times:

- Thevariablerun[i] isderived asfollows.

- If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. run[i] is
set equal to run_before.

- Otherwise (zerosLeft isequal to 0), run[i] isset equal to 0.

- Thevaue of run[i] is subtracted from zerosLeft and the result assigned to zerosLeft. The result of the subtraction
shall be greater than or equal to 0.

- Theindex i isincremented by 1.

DRAFT ITU-T Rec. H.264 (2002 E) 157

Finally the value of zerosLeft isassigned to run[i].

Table9-7 —total_zerostablesfor 4x4 blockswith Total Coeff(coeff_token) 1to 7

total_zeros Total Coeff(coeff_token)
1 2 3 4 5 6 7
0 1 11 0101 00011 | 0101 | 000001 | 0OOO 01
1 011 110 111 111 0100 00001 | 00001
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 00011 0101 0011 101 101 100 11
6 00010 0100 100 100 100 011 010
7 0000 11 0011 011 0011 011 010 0001
8 0000 10 0010 0010 011 0010 | 0001 001
9 0000 011 00011 | 00011 | 0010 00001 | 001 0000 00
10 0000 010 00010 | 00010 | 00010 | 0001 0000 00
11 00000011 | 000011 | 000001 | 00001 | 0000 O
12 0000 0010 000010 | 00001 | 000COO
13 000000011 | 000001 | 0000 00
14 0000 00010 | 0000 00
15 0000 0000 1

Table 9-8 —total_zerostablesfor 4x4 blocks with Total Coeff(coeff _token) 8to 15

total_zeros Total Coeff(coeff_token)
8 9 10 11 12 13 | 14| 15
0 000001 | 000001 | OOOO1 | OOOO | OOOO | OO0 | OO | O
1 0001 000000 [00000 | 0001 | 0001 | 001 | 01 | 1
2 00001 | 0001 001 001 | 01 1 1
3 011 11 11 010 |1 01
4 11 10 10 1 001
5 10 001 01 011
6 010 01 0001
7 001 0000 1
8 0000 00

158 DRAFT ITU-T Rec. H.264 (2002 E)

9.24

Table 9-9 —total_zerostablesfor chroma DC 2x2 blocks

DRAFT ISO/IEC 14496-10 : 2002 (E)

total_zeros | Total Coeff(coeff_token)
1 2 3

0 1 1 1

1 01 01 0

2 001 00

3 000

Table9-10 - Tablesfor run_before

run_before | zerosLeft
112 |3 |4 5 6 >6
0 1|11 (11|11 (11 |11 |111
1 0(01|10(10 |10 | 00O | 110
2 -|(00]01]01 |0O11 001|101
3 - |- 00 | 001 | 010 | 011 | 100
4 -|- |- |000| 001|010 | 011
5 -l - |- 000 | 101 | 010
6 - |- - - - 100 | 001
7 -l- - - - - 0001
8 - - - - - 00001
9 - |- |- |- |- |- | ooooo1
10 -l - |- - - 0000001
11 -l- - - - - 00000001
12 - |- - - - - 000000001
13 -l - |- - - 0000000001
14 - - |- - - 00000000001

Combining level and run information

Input to this process are a list of transform coefficient levels called level, alist of runs called run, and the number of non-
zero transform coefficient levels Total Coeff(coeff token).

Output of this processisan list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to-1 and an index i is set equal to (Total Coeff(coeff token) — 1). The following

procedureisiteratively applied Total Coeff(coeff token) times:

coeffNum isincremented by run[i] + 1.

coeffLevel[coeffNum] isset equal to level[i].

Theindex i is decremented by 1.

DRAFT ITU-T Rec. H.264 (2002 E)

159

9.3 CABAC parsing processfor dlice data

This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.4 and 7.3.5 when
entropy_coding_mode flag isequal to 1.

Inputs to this process are arequest for avalue of a syntax element and values of prior parsed syntax elements.
Output of this processis the value of the syntax element.

When starting the parsing of the slice data of a slice in subclause 7.3.4, the initialisation process of the CABAC parsing
processisinvoked as specified in subclause 9.3.1.

The parsing of syntax elements proceeds as follows:
For each requested value of a syntax element a binarization is derived as described in subclause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in subclause 9.3.3.

For each bin of the binarization of the syntax element, which isindexed by the variable binldx, a context index ctxldx is
derived as specified in subclause 9.3.3.1.

For each ctxldx the arithmetic decoding processis invoked as specified in subclause 9.3.3.2.

The resulting sequence (by .. buingx) Of parsed bins is compared to the set of bin strings given by the binarization process
after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value shall be
assigned to the syntax element.

In case the request for avalue of a syntax element is processed for the syntax element mb_type and the decoded value of
mb_type is |_PCM, the decoding engine shall be initialised after the decoding of the pcm_alignment_zero_bit and all
pcm_byte data as specified in subclause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax
element.

160 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10

CABACParsing(SE)

Yes——

Initialisation of
context variables
I
No Initialisation of

decoding engine
]

Get Binarization(SE)‘ ‘

binldx = -1

binldx++

it

Get ctxldx(binldx)

DecodeBin(ctxldx)

(Bgs--esDpinigy) N
Binarization(SE) ?

Yes

sme

&& value(by,...b,;4) ==
I_PCM?

Yes——

Initialisation of
decoding engine
No ‘

DRAFT ITU-T Rec. H.264 (2002 E)

: 2002 (E)

161

vaMPS =0

} else{
pStateldx = preCtxState - 64
vaMPS=1

}

In Table 9-11, the ctxldx for which initialisation is needed for each of the dlice types are listed. Also listed is the table
number that includes the values of m and n needed for the initialisation. For P, SP and B dlice type, the initialisation
depends aso on the value of the cabac init_idc syntax element. Note that the syntax element names do not affect the
initialisation process.

Table 9-11 — Association of ctxldx and syntax elementsfor each dicetypein theinitialisation process

Slicetype
Syntax element Table
s | P, SP B
mb_skip_flag $$:ggjﬁ 11413 | 2426
dlice data()
mb_field_decoding_ flag Table9-18 | 7072 | 7072 | 7072 | 7072
Table 9-12,
mb_type Table 9-13, 0-10 3-10 14-20 27-35
Table 9-14.
coded_block_pattern Table9-18 | 7376 | 7376 | 7376 | 7376
macroblock_layer() (luma)
coded_block_pattern Table9-18 | 77-84 | 77-84 | 77-84 | 77-84
(chroma)
mb_qp_delta Table9-17 | 6063 | 60-63 | 6063 | 60-63
prev_intradx4_pred_mode flag | Table 9-17 68 68 68 68
mb_pred() rem_intradx4_pred_mode Table9-17 69 69 69 69
intra_chroma_pred_mode Table9-17 64-67 64-67 64-67 64-67
ref_idx_|0 Table 9-16 5459 | 54-59
ref_idx_|1 Table 9-16 54-59
b, preei() end mvd 10][][0] Table 9-15 40-46 | 40-46
b_mb_pred
sub_mb._pred() mvd_I1[J[][0] Table 9-15 40-46
mvd 10[][1[1] Table 9-15 47-53 | 47-53
mvd 11 (][1] Table 9-15 47-53
b_mb_pred() b_mb Teble9-13 2123 | 3639
Sub m I sub_mb_type - -
allint TP Table 9-14
coded_block_flag Table 9-18 85-104 85-104 85-104 85-104
significant_coff_flag(] Table 9-19, | 105-165, | 105-165, | 105-165, | 105-165,
9 Coetl_Tlag Table9-22. | 277-337 | 277-337 | 277-337 | 277-337
residual _block_cabac()
\ast_significant_codff_flag] | 1201920, | 166-226, | 166226, | 166-226, | 166-226,
—S9 _coet_Tlag Table9-23. | 338-398 | 338-398 | 338-398 | 338-393
coeff_abs |evel_minusl[] Table9-21 | 227-275 | 227-275 | 227-275 | 227-275

NOTE — ctxldx egua to 276 is associated with the end_of_dlice flag and the bin of mb_type, which specifies the |_PCM
macroblock type. The decoding process specified in subclause 9.3.3.2.4 applies to ctxldx equal to 276. This decoding process,

162 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

however, may aso be implemented by using the decoding process specified in subclause 9.3.3.2.1. In this case, the initial values
associated with ctxldx equal to 276 are specified to be pStateldx = 63 and vaMPS = 0, where pStateldx = 63 represents a non-
adapting probability state.

Table9-12 — Values of variablesm and n for ctxldx from Oto 10

Initialisation ctxl dx

variables 0 1 2 3 4 5 6 7 8 9 10
m 20 2 3 20 2 3 | 28| 23| -6 1 7
n 5 | s4 | 74 | a5 | 54 | 74 | 127 | 104 | 53 | s4 | m1

Table 9-13 — Values of variablesm and n for ctxldx from 11 to 23

Vallljelof‘ Initia_Jisation ctxl dx
cabac init idc | variables |4\ o | g3 | g4 | 15 | 16 | 17 | 18 | 19 | 20 | 2 | 22 | 23
0 m 23 | 23 | 22 | 1 o | 3| 5 | 3|11 | 1| 12| 4| w7
n 3 | 2 0 o | 49 |18 | 57 | 78 | 65 | 62 | 49 | 73 | 50
1 m 2 | 3 | 16| 2 4 | 29| 2 6 | 13| s 9 3 | 10
n 5 | o 0 o | 4 |18 | 65 | 70 | 79 | 52 | 50 | 70 | 54
2 m 20 | 25 | 14| 0| 3 | 20| 26 | 4| 24| 5 6 | 17 | 14
n 6 | 0 o | 51 | 62 | 99 | 16 | 8 | 102 | 57 | 57 | 713 | 57

Table 9-14 — Values of variablesm and n for ctxldx from 24 to 39

Vallljelof‘ Initial_lisation ctxldx
cabac Init idc | variables | | o5 | 55 | 27 | 28 | 20 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 30
0 m 18| 9 | 20|26 |16| 9|4 |2]| 1| 13|20 1|-6|17] 6|09
n 64 | 43| 0 | 67 | 90 |104 | 127 | 104 | 67 | 78 | 65 | 62 | 86 | 95 | 61 | 45
1 m 26 | 19 | 40 | 57 | 41 | 26 | 45| 15| 4 | 6 | 13| 5 | 6 |-13]| 0 | 8
n 34 | 2| 0| 2 |3 |69 |127|101]|76 | 70| 79|65 |6 | 9 |52| 4
2 m 20| 20| 20|54 |37 | 12|32 |2|2|4|2|5]|6|-14| 6] 4
n 40 | 10| 0| o |4 |97 |127|117| 74| 8 |102| 57 | 93|88 | 4| 55

DRAFT I TU-T Rec. H.264 (2002 E) 163

Table 9-15 — Values of variablesm and n for ctxldx from 40 to 53

Valueof | Initialisation otxldx
cabac Init ide | - variables |0 |4 | g 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
0 m 3| 6| 1m| 6 | 7| 5] 2 o | 3|1 |5 | 4| 3]0
n 60 | 8. | 9 | 55 | 67 | 8 | 8 | 58 | 76 | 94 | 54 | 69 | 81 | 88
1 m 2| 5 | 10| 2 2| 3| 3| 1| 3|6 |o0]|3|7]|s=
n 60 | 8 | 9 | 59 | 75 | 87 | 100 | 56 | 74 | 8 | 50 | 8 | 8 | 95
2 m a1 | a5 | 21| 19 | 20 | 4 | s 1| 5| 3|5 |6 | 3|1
n 80 | 103 | 116 | 57 | 58 | 84 | 9 | 63 | 85 | 106 | 63 | 75 | 90 | 101
Table 9-16 — Values of variablesm and n for ctxldx from 54 to 59
Value of Initialisation otxldx
cabac init_idc variables 5 55 56 57 58 59
0 m 7 5 4 5 7 1
n 67 | 74 | 74 | 80 | 72 | s8
1 m 1 1 1 2 5 0
n 6 | 77 | 70 | 88 | 72 | e
2 m 3 4 2 | 12| 7 1
n 55 | 79 | 75 | 97 | 50 | 60
Table9-17 — Values of variablesm and n for ctxldx from 60 to 69
Initialisation otxidx
variables 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | €8 | 69
m 0 0 0 0 -9 4 0 7 | 13| 3
n 41 | 63 | 63 | 63 | 8 | 8 | 97 | 2 | 4 | e2
164 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-18 — Values of variablesm and n for ctxldx from 70 to 104

| and Sl Value of cabac_init_idc Value of cabac_init_idc

slices — ! :?g;l —
ctxldx 1 ctxldx 1
m n m n m n m n m n m n m n m n
70 0 11 0 45 13 15 7 34 88 -11 | 115 | -13 | 108 | -4 92 5 78
71 1 55 | -4 | 78 7 51 | -9 | 88 89 12| 63 | -3 | 46 0 39| 6| 5
72 0 69 | -3 | 96 2 80 | -20 | 127 00 -2 | 68| -1 | 65 0 65 | 4 61
73 -17 | 127 | -27 | 126 | -39 | 127 | -36 | 127 91 -15 | 84 -1 57 | -15| 84 | -14 | 83
74 -131 102 | -28| 98 | -18 | 91 | -17 | 91 92 -13 | 104 | -9 | 93 | -35 | 127 | -37 | 127
75 0 82 |-25)|101|-17 | 96 | -14 | 95 93 3|7 | -3|7|-2|73|-5]|T79
76 -7 | 74 | -23| 67 | -26 | 81 | -25| 84 94 -8 | 93| -9 | 92 |-12|104 | -11 | 104
77 21107 | -28| 82 | -35| 98 | -25 | 86 95 10| 90 | -8 | 87 | -9 | 91 | -11| 91
78 -27 | 127 | -20 | 94 | -24 | 102 | -12 | 89 96 -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127
79 31| 127 | -16 | 83 | -23 | 97 | -17 | 91 97 -1 74 5 54 3 55 0 65
80 -24 | 127 | -22 | 110 | -27 | 119 | -31 | 127 98 -6 | 97 6 60 7 5 | -2 | 79
81 -18| 95 | -21| 91 | -24 | 99 | -14 | 76 9 7| 91 6 59 7 55 | 0 72
82 -27 | 127 | -18 | 102 | -21 | 110 | -18 | 103 | 100 | -20 | 127 | 6 69 8 61 | -4 | 92
83 21| 114 | -13 | 93 | -18 | 102 | -13 | 90 101 4 | 5 | -1 |48 | -3 |53 | -6 | 56
84 -30 | 127 | -29 | 127 | -36 | 127 | -37 | 127 102 -5 82 0 68 0 68 3 68
85 171123 | -7 | 92 | O 80 | 11 | 80 103 7 | 76| 4|69 | -7 | 74| -8]|T71
86 -12|115| -5 | 89 | -5 | 89 5 76 104 |-22|125| -8 | 88 | -9 | 88 | -13 | 98
87 -16 | 122 | -7 96 -7 94 2 84

DRAFT ITU-T Rec. H.264 (2002 E)

165

Table 9-19 — Values of variablesm and n for ctxldx from 105 to 165

| and Sl Value of cabac_init_idc Value of cabac_init_idc
slices — ! ngesSI E—
ctxldx 0 1 ctxldx 0 1 2
m n m n m n m | n m n m | n|{m/|n|m n

105 7| 9| -2 |8 |-13|103| -4 |8 | 136 |-13|101| 5 (53| O [58]| -5 | 75
06 |-11| 8 | 6 | 78 | -13 | 91 | -12 | 88| 137 |-13| 91 | -2 [61| -1 [60| -8 | 80
107 3|77 |-1|7|-9 |8 |-5]|8)| 138 |-12| 94| 0 [5| -3 |61]|-21| 83
108 S5 | 71| -7 |77 |14 92| -3 |72| 139 |-10| 8 | O |5 | -8 |67 |-21| 64
109 -4 | 63 2 54 | -8 | 76 | -4 | 67| 140 |-16| 84 | -13 |63 | -25 |84 | -13 | 31
110 -4 68 5 50 | -12 | 87 -8 | 72 141 -10 | 86 5 160|-14| 74| -25| 64
111 | -12| 84 | -3 | 68 | -23 | 110 | -16 | 89 | 142 -7 | 83| -1 62| -5 |65|-29]| 94
112 -7 62 1 50 | -=24 | 105 | -9 | 69 143 -13 | 87 4 57 5 52 9 75
113 -7 | 65 6 | 42 |-10| 78 | -1 | 59| 144 |-19| 94 | 6 | 69| 2 |57 | 17 | 63
114 8 61 -4 81 | -20 | 112 5 66 145 1 70 4 57| 0 61| -8 74
115 5 56 1 63 | -17 | 99 4 57 146 0 72 14 | 39| 9 |69 | -5 35
116 -2 66 -4 70 | -78 | 127 | 4 | 71 147 -5 74 4 | 51|-11|70]| -2 27
117 1 64 0 67 | -70 | 127 | -2 | 71 148 18 59 13 [68| 18 | 55| 13 91
118 0 61 2 57 | -50 | 127 2 58 149 -8 | 102 | 3 64| 4 | 71| 3 65
119 -2 78 -2 76 | 46 | 127 | -1 | 74 150 -15 | 100 1 61| O 58 | -7 69
120 1 50 11 35 -4 66 -4 | 44 151 0 95 9 63 7 61| 8 77
121 7 52 4 64 -5 78 -1 | 69 152 -4 75 7 50 9 41 | -10 | 66
122 10 | 35 1 61 -4 71 0 62 153 2 72 16 [39| 18 | 25| 3 62
123 0 44 | 11 35 -8 72 -7 | 51 154 11 | 75 5 44 | 9 32| -3 68
124 11 | 38 18 25 2 59 -4 | 47 155 -3 71 4 52 5 43 | -20 | 81
125 1 45 12 24 -1 55 -6 | 42 156 15 | 46 11 | 48 9 47 | 0O 30
126 0 46 (13| 29| -7 | 70 | -3 | 41| 157 |-13| 69 | 5|60 O |44 | 1 7
127 5 4 | 13| 36 | 6 | 75| -6 | 53| 158 0 62 | -1 |59 0 |51 -3 | 23
128 31|17 |-10| 93 | -8 | 89 | 8 | 76 | 159 0 65 | O |59 | 2 |46 |-21| 74
129 1 51 | -7 | 73 | -34 | 119 | -9 | 78 | 160 21 | 37 | 22 | 33| 19 | 38| 16 | 66
130 7 50 -2 73 -3 75 | -11 | 83 161 -15 | 72 5 4 | -4 | 66 | -23 | 124
131 28 19 13 | 46 | 32 20 9 52 162 9 57 14 | 43| 15 | 38| 17 | 37
132 16 | 33 9 | 49 | 30| 22| 0 |67| 163 16 | 54 | -1 | 78| 12 | 42| 44 | -18
133 14 | 62 | -7 | 100 | -44 | 127 | -5 | 90 | 164 0 62 | O | 60| 9 | 34| 50 | -34
134 | -13| 108 | 9 53 | 0 54 1 | 67| 165 12 | 72 9 |69| 0 |89 -22] 127
135 -15 | 100 | 2 53 -5 61 | -15 | 72

166

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-20 — Values of variablesm and n for ctxldx from 166 to 226

| and SI Value of cabac_init_idc Value of cabac_init_idc
slices — ! g?g;l —
ctxldx 0 1 2 ctxldx 0 1
m| n | m|n| m n|mjf|n m| n |[m]| n m n m n

166 | 24| 0 |11 (28| 4 | 45| 4 | 39 197 26| -17 | 28| 3 36 | -28| 28| -3
67 | 15| 9 2 (40| 10 | 28 | O | 42 198 | 30| -25(28| 4 | 38| -28| 24| 10
168 8 | 25| 3 |4| 10 | 31| 7| 34 199 28|-20132| O 38 | -27 | 27 0
169 | 13| 18 | 0 (49| 33 | -11| 11| 29 200 [33|-23(34| -1 |34 |-18| 34 | -14
170 | 15| 9 0 |46 | 52 | 43| 8 | 31 201 | 37|-27|30]| 6 35 | -16 | 52 | -44
171 13 | 19 2 | 44| 18 15 6 | 37 202 33 |-23| 30 6 34 | -14 | 39 | -24
172 | 10| 37| 2 (51| 28 | O 7| 42 203 |40 |-28(32| 9 32| -8 |19 | 17
173 | 12| 18 | 0 (47| 35 | -22 | 3 | 40 204 | 38|-17 (31| 19 |37 | 6 | 31 | 25
174 6 |29 | 4 (39| 3 |-25| 8] 33 205 [33|-11|26| 27 | 35 0 | 36 | 29
175 | 20| 33 | 2 (62| 34 | 0 | 13| 43 206 |40 |-15(26| 30 | 30 | 10 | 24 | 33
176 | 15| 30| 6 [46| 39 | -18 | 13| 36 207 |41| 6 [37| 20 | 28 | 18 | 34 | 15
177 4 | 45 | 0 |54 | 32 | -12 | 4 | 47 208 38 1 28| 34 | 26 25 | 30 20
178 1 58 | 3 | 54102 |-94| 3 | 55 209 41 | 17 | 17| 70 | 29 | 41 22 73
179 0|62 2 |58]| 0 0 2 | 58 210 (30| 6 | 1| 67| O 75 | 20 | 34
180 7 |61| 4 |63| 56 |-15| 6 | 60 211 27| 3 5 | 59 2 72 | 19 | 31
181 |12 38| 6 (51| 33| 4| 8| 44 212 26| 22| 9| 67| 8 77| 27 | 44
182 11 | 45 6 | 57| 29 10 | 11 | 44 213 37| -16 | 16 | 30 14 | 35 19 16
183 | 15| 39| 7 (53| 37 | -5 |14 42 214 | 35| 4 (18| 32 | 18 | 31 | 15 | 36
184 11 | 42 6 52| 51 |-29| 7 | 48 215 38| -8 |18| 35 17 | 35 15 36
185 | 13| 44| 6 [55| 39 | -9 | 4 | 56 216 | 38| -3 (22| 29 | 21 | 30 | 21 | 28
186 16 | 45 | 11 | 45| 52 | -34 | 4 | 52 217 37| 3 24 | 31 17 | 45 25 21
187 | 12| 41 |14 (36| 69 | -58 | 13 | 37 218 [38| 5 (23| 38 | 20| 42 | 30 | 20
188 | 10| 49 | 8 [53| 67 | 63| 9 | 49 219 (42| O (18| 43 | 18 | 45 | 31 | 12
189 3034 |-1|8| 4 -5 |1 19| 58 220 35|16 | 20| 41 | 27 26 27 16
190 | 18| 42 | 7 | 55| 32 7 | 10| 48 221 | 39| 22 (11| 63 | 16 | 54 | 24 | 42
191 | 10| 5 | -3 (78| 5 |-29| 12| 45 222 14| 48 | 9 | 59 7 66 0 93
192 | 17| 51 | 15| 46 | 32 1 0 | 69 223 | 27| 37| 9| 64| 16| 56 | 14 | 56
193 | 17| 46 | 22| 31| O 0 |20 33 224 | 21|60 |-1| 94 |11 | 73 | 15 | 57
194 0|8 |-1|8)| 27 |36 | 8| 63 225 | 12| 68 | -2| 8 | 10 | 67 | 26 | 38
195 26| -19| 25| 7 33 | -25| 35| -18 226 2 97 | -9 | 108 | -10 | 116 | -24 | 127
196 | 22| -17|30|-7| 34 |-30|33]|-25

DRAFT ITU-T Rec. H.264 (2002 E)

167

Table 9-21 — Values of variablesm and n for ctxldx from 227 to 275

| and SI Value of cabac init_idc Value of cabac init_idc
di - | and Sl — =
Ices slices
ctxldx 0 1 2 ctxldx 0 1 2
m n m n m n m n m n m n m n m n

227 3|71 6| 76 | -23| 112 | -24 | 115 252 12| 73 | -6 [55| -16 | 72| -14 | 75

228 6 | 42| -2 | 44 |15 | 71 | -22 | 82 253 -8 | 76 0 [58] -7 |69|-10| 79

229 5 (5] 0 45 | -7 | 61 | -9 | 62 254 -7 | 80 0O |64] -4 (69| 9| 83

230 3 (5|0 52 0 53 0 53 255 9 | 8 | -3 |74| -5 |74]|-12| 92

231 2 |162| -3 | 64| -5 | 66 0 59 256 -17 1110 | -10 [90 | -9 | 86 | -18 | 108

232 O | 58| -2 |59 |-11| 77 | -14| 85 257 -11 | 97 0 |70| 2 |66]| -4 79

233 1 (63| -4 |7 | -9 |80 |-13| 89 258 20| 84 | -4 |29 9 | 34| -22| 69

234 2 (72| 4|75 | -9 | 8 |-13| % 259 11| 79 5 |31 1 (32]|-16]| 75

235 -1 (74| -8 | 8 |-10| 8 | -11 | 92 260 -6 73 7 | 42|11 | 31| -2 | 58

236 -9 [91| -17 | 102 | -34 | 127 | -29 | 127 261 -4 | 74 1 |5 5 |51 58

237 S5 (67| -9 | 77 |-21| 101 | -21 | 100 262 13| 8 | -2 |58 -2 |55 |-13 | 78

238 S5 127 3 24 | -3 | 39 |-14| 57 263 131 9% | -3 (72| -2 |67 -9 | 83

239 -3 13| 0 42 | -5 | 53 | -12 | 67 264 ;111 97 | 3 (8| 0 | 73| 4| 81

240 2 (4] 0 48 | -7 | 61 |-11| 71 265 19| 117 | -11 | 97| -8 | 89 | -13 | 99

241 0 |46 | O 5 | -11 | 75 | -10 | 77 266 -8 | 78 0O |58| 3 [52]|-13| 81

242 -6 | 64| -6 | 59 | -15| 77 | -21 | 85 267 5 | 33 8 5 7 4 | -6 | 38

243 -8 (68| -7 | 71 |-17| 91 | -16 | 88 268 -4 | 48 | 10 | 14| 10 | 8 | -13 | 62

244 -10 | 78 | -12 | 83 | -25 | 107 | -23 | 104 269 -2 | 53 |14 |18| 17 | 8 | -6 | 58

245 6 | 77| -11| 87 |-25| 111 | -15 | 98 270 -3 | 62 | 13 |27| 16 [19| -2 | 59

246 -10 | 86 | -30 | 119 | -28 | 122 | -37 | 127 271 13 71 2 |40 3 | 37|-16| 73

247 12192 1 58 |-11| 76 | -10 | 82 272 -10 | 79 0O |58 -1 |61]|-10]| 76

248 15|55 -3 |29 |-10| 44 | -8 | 48 273 12| 86 | -3 (70| -5 | 73|-13| 86

249 -0 (60| -1 | 36 | -10| 52 | -8 | 61 274 131 9 | 6 |79 -1 | 70| -9 | 83

250 6 [62| 1 38 |-10| 57 | -8 | 66 275 14| 97 | -8 |8 | 4 | 78| -10 | 87

251 4 | 65| 2 43 | -9 | 588 | -7 | 70

168 DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-22 — Values of variablesm and n for ctxldx from 277 to 337

DRAFT ISO/IEC 14496-10 : 2002 (E)

| and Sl Value of cabac_init_idc Value of cabac_init_idc
slices — ! Zrlfess' —
ctxldx 1 ctxldx 0 1 2

m n m n m n m n m | n|{m|n|m/|[n|m]|n
277 6 | 93 | -13 | 106 | 21| 126 | -22 | 127 | 308 |-16 |9 | -1 |51 | -16 | 77 | -10 | 67
278 -6 | 84 | -16 | 106 | -23 | 124 | -25 | 127 | 309 -7 | 8| 7 |49]| -2 64| 1 |68
279 -8 | 79 |-10| 87 |-20| 110 | -25 | 120 | 310 -8 [8 |8 (|52 2 61| 0 |77
280 0 66 | -21 | 114 | -26 | 126 | -27 | 127 | 311 -7 |89 |41| 6 |67]| 2 |64
281 -1 71 | -18 | 110 | -25 | 124 | -19 | 114 312 9|8)| 6 (47| -3 |64| O 68
282 0 62 | -14| 98 | -17 | 105 | -23 | 117 | 313 |-13 (8| 2 |5 | 2 |57 | -5 |78
283 -2 | 60 | -22 | 110 | -27 | 121 | -25 | 118 | 314 4 | 66|13 |41 | -3 |65| 7 |55
284 -2 59 | -21 | 106 | -27 | 117 | -26 | 117 315 3| 7711044 | -3 66| 5 59
285 5| 75 |-18|103 | -17 | 102 | -24 | 113 | 316 -3 |7 |6 |50]| 0 62| 2 |65
286 -3 | 62 |-21|107 | -26 | 117 | -28 | 118 | 317 6 | 76| 5 |53 9 [51]| 14 | 54
287 -4 | 58 | -23 (108 | -27 | 116 | -31 | 120 | 318 10 |58 |13 | 49| -1 | 66| 15 | 44
288 -9 66 | -26 | 112 | -33 | 122 | -37 | 124 319 -1 |76 | 4 |63 -2 |71| 5 60
289 -1 | 79 |-10| 96 | -10| 95 |-10 | %4 320 -1 8|6 |64]| -2 |75| 2 |70
290 0 71 | -12 | 95 | -14 | 100 | -15 | 102 | 321 7199 -2(69| -1 |70]| -2 |76
291 3 68 | -5 | 91| -8 | 95 |-10| 99 322 |-14| 9| -2|59| -9 |72|-18| 86
292 10 | 44 | 9 | 93 | -17 | 111 | -13 | 106 | 323 2 |9% |6 |7 | 14 | 60| 12 | 70
293 -7 | 62 | -22 | 94 | -28 | 114 | -50 | 127 | 324 0O |76|10|44| 16 | 37| 5 | 64
294 15|36 | 5|8 | 6|8 | -5 9 325 5 |74 9 |31L| 0 |47]|-12| 70
295 14 | 40 9 67 | -2 | 80 | 17 | 57 326 0 |70|12| 43|18 | 35| 11 | 55
296 6| 27| 4|8 | 4|8 | -5]| 86 327 |11 | 75| 3 |53|11|37| 5 |56
297 12 | 29 |-10| 8 | -9 | 8 | -13 | 94 328 1 |68 (14|34 12 |41| O | 69
298 1 4 | -1 | 70 | -8 | 81 |-12| 91 329 0 |65]10|38| 10 |41 2 |65
299 20 | 36 7 60 | -1 | 72 | -2 | 77 330 |-14|73|-3|52| 2 |48| -6 |74
300 18 | 32 9 58 | 5 64 | O 71 331 3 621340 12 |41| 5 |54
301 5 42 5 61 1 67 -1 73 332 4 62|17 | 32| 13 | 41| 7 54
302 1 48 | 12 | 50 9 56 | 4 64 333 -1 | 68| 7 [4| O [59]| 6 |76
303 10 | 62 | 15| 50 | O 69 | -7 | 81 334 |-13| 75| 7 |3| 3 |50]|-11] 82
304 17 | 46 18 | 49 1 69 5 64 335 11 | 55| 13| 50| 19 |40 | -2 | 77
305 9 64 | 17 54 7 69 15 57 336 5 64|10 | 57| 3 66 | -2 | 77
306 -12 | 104 | 10 | 41 -7 69 1 67 337 12 | 70 | 26 | 43| 18 | 50 | 25 | 42
307 | -11| 97 7 | 46 | 6 | 67 0 68

DRAFT ITU-T Rec. H.264 (2002 E)

169

170

Table 9-23 — Values of variablesm and n for ctxldx from 338 to 398

| and SI Value of cabac_init_idc Value of cabac_init_idc
slices — ! Zrlfess' N
ctxldx 0 1 2 ctxldx 0 1 2
m n m n m| n |mj|n m|n |mj|n|m|n m n

338 15 6 14 | 11 | 19| 6 |17 | -13 | 369 |32 |-26 |31 | -4 |40 |-37| 37 | -17
339 6 19 | 11 | 14 | 18| -6 | 16| -9 370 | 37|-30|27| 6 |38|-30| 32 1
340 7 16 9 11 (14| O 17 | -12 371 44 | -32 | 34| 8 | 46| -33 | 34 15
341 12 | 14 | 18 | 11 | 26| -12 | 27| -21 | 372 |34 |-18|30| 10|42 |-30| 29 | 15
342 8| 13 | 21 9 |31|-16|37|-30| 373 [34|-15|24|22|40|-24| 24| 25
343 13 11 | 23 -2 | 33| -25| 41| -40 374 40 | -15 (33| 19| 49| -29 | 34 | 22
344 13 |15 | 32| -15 (33| -22|42|-41| 375 | 33| -7 |22(32|38|-12| 31| 16
345 15|16 | 32 | -15 |37 |-28|48|-47| 376 |3 | -5 |26|31|40|-10| 35 | 18
346 12 | 23 | 34 | -21 |39|-30|39|-32| 377 | 33| 0 |21|{41|38| -3 | 31| 28
347 13 | 23 | 39| -23 |42 |-30|46|-40| 378 | 38| 2 | 26|44 |46 | -5 | 33| 41
348 15| 20 | 42 | -33 | 47| 42| 52| -51| 379 | 33| 13 | 23|47 |31| 20| 36 | 28
349 14 | 26 | 41 | -31 | 45| -36 | 46| 41| 380 | 23| 3 |16 (65|29 | 30 | 27 | 47
350 14 | 44 | 46 | -28 | 49 | -34 | 52 | -39 | 381 1358 |14 |71|25| 44 | 21| 62
351 17 | 40 | 38 | -12 (41| -17 | 43| -19| 382 | 29| -3 | 8 | 60| 12| 48 | 18 | 31
352 17 | 47 | 21 29 | 32 9 32| 11 383 26| 0 6 [63| 11| 49 | 19 26
353 24 | 17 | 45 | -24 | 69 | -71 | 61| 55| 384 | 22| 30 | 17| 65| 26| 45 | 36 | 24
354 21 | 21 | 53 | 45 | 63| -63 |56 | -46| 38 |31 | -7 |21 (24| 22| 22| 24 | 23
355 25 | 22 | 48 | -26 | 66 | 64 | 62 | -50 | 386 |35 |-15|23 (20|23 | 22 | 27 | 16
356 31 | 27 | 65 | 43 | 77| -74|8L|-67| 387 |34 | -3 |26(23|27|21| 24| 30
357 22 | 29 | 43 | -19 | 54| -39 |45|-20| 38 |34 | 3 |27(32|33|20| 31| 29
358 19 | 35 |3 |-10|52|-35|3| -2 389 | 36| -1 |28(23|26| 28| 22| 41
359 14 | 50 | 30 9 |41|-10| 28| 15 300 [34| 5 | 2824|130 | 24| 22| 42
360 10 | 57 | 18| 26 36| 0 |34 1 391 | 32| 11 | 23|40 | 27| 34 | 16 | 60
361 7 63 | 20 | 27 |40 | -1 | 39| 1 392 | 35| 5 |24 (32|18 42 | 15 | 52
362 2| 77| 0 57 (30| 14 | 30 | 17 393 [34| 12 | 28|29 | 25| 39 | 14 | 60
363 -4 | 82 |-14| 8 | 28| 26 | 20| 38 394 | 39| 11 | 23|42 |18| 50 | 3 78
364 3| 94| -5 | 7 | 23|37 |18 45 395 [30|29 19|57 |12 | 70 | -16 | 123
365 9 69 | -19| 97 | 12| 55 | 15| 54 3% | 34| 26 | 22|53|21 |5 |21 53
366 |-12|109|-35|125| 11| 65| O | 79 397 | 29|39 |22|61|14| 71| 22| 56
367 36 | -35 | 27 0 |37|-33|36|-16| 398 (19| 66 |11 |8 | 11| 8 | 25 | 61
368 36 | -34 | 28 0 |39|-36|37]|-14

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

9.3.1.2 Initialisation processfor the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a dlice or after the decoding of the
pcm_alignment_zero_bit and al pcm_byte data for a macroblock of type | PCM.

Outputs of this process are the initialised decoding engine registers codlRange and codl Offset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables codlRange and codlOffset. In the
initialisation procedure of the arithmetic decoding process, codlRange is set equal to OxO1FE and codl Offset is set equal
to the value returned from read bits(9) interpreted as a 9 bit binary representation of an unsigned integer with most
significant bit written first.

NOTE — The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit register
precision. However, the minimum register precision for the variables codlRange and codl Offset is 9 hits.

9.3.2 Binarization process
Input to this processis arequest for a syntax element.
Output of this processis the binarization of the syntax element, maxBinldxCtx, ctxldxOffset, and bypassH ag.

Table 9-24 specifies the type of binarization process, maxBinldxCtx, and ctxldxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGK) binarization process, and the fixed-length (FL) binarization process are given in
subclauses 9.3.2.1 t0 9.3.2.4, respectively. Other binarizations are specified in subclauses 9.3.2.5 t0 9.3.2.7.

Except for | dlices, the binarizations for the syntax element mb_type as specified in subclause 9.3.2.5 consist of bin
strings given by a concatenation of prefix and suffix bit strings. The UEGK binarization as specified in 9.3.2.3, which is
used for the binarization of the syntax elements mvd IX (X =0, 1) and coeff_abs level _minusl, and the binarization of
the coded_block_pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binldx variable as specified further in subclause 9.3.3.
The two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and the binarization
suffix part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxldxOffset) variable and a specific value of the maxBinldxCtx variable as given in Table 9-24. When two values for
each of these variables are specified for one syntax element in Table 9-24, the value in the upper row is related to the
prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax
element.

The use of the DecodeBypass process and the variable bypassFlag is derived as follows.

- If novalueis assigned to ctxldxOffset for the corresponding binarization or binarization part in Table 9-24 |abelled
as“na’, al bins of the hit strings of the corresponding binarization or of the binarization prefix/suffix part shall be
decoded by invoking the DecodeBypass process as specified in subclause 9.3.3.2.3. In such a case, bypassHlag is set
equa to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the
DecodeBypass process shall be applied.

- Otherwise, for each possible value of binldx up to the specified value of MaxBinldxCtx given in Table 9-24, a
specific value of the variable ctxldx is further specified in subclause 9.3.3. bypassFlag is set equal to 0.

The possible values of the context index ctxldx are in the range of 0 to 398, inclusive. The value assigned to ctxldxOffset
specifies the lower value of the range of ctxldx assigned to the corresponding binarization or binarization part of a syntax
element.

ctxldx = ctxldxOffset = 276 is assigned to the syntax element end_of slice flag and the bin of mb_type, which specifies
the I_PCM macroblock type as further specified in subclause 9.3.3.1. For parsing the value of the corresponding bin
from the bitstream, the arithmetic decoding process for decisions before termination (DecodeTerminate) as specified in
subclause 9.3.3.2.4 shall be applied.

NOTE — The bins of mb_type in | slices and the bins of the suffix for mb_type in Sl slices that correspond to the same value of

binldx share the same ctxldx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_typein P, SP, and B dlices
may share the same ctxIdx.

DRAFT ITU-T Rec. H.264 (2002 E) 171

172

Table 9-24 — Syntax elements and associated types of binarization, maxBinl dxCtx, and ctxl dxOffset

Syntax element Typeof binarization maxBinl dxCtx ctxl dxOffset
mb_type prefix and suffix prefix: O prefix: 0
(Sl dlicesonly) as specified in subclause 9.3.2.5 suffix: 6 suffix: 3
mb_type (I slices only) as specified in subclause 9.3.2.5 6 3
mb_skip_flag _
(P, SPdices only) FL, cMax=1 0 1
. prefix and suffix prefix: 2 prefix: 14
mb_type (P, SP dlices only) as specified in subclause 9.3.2.5 sffixc5 | suffix: 17
sub_mb_type as specified in subclause 9.3.2.5 2 21
(P, SPdlicesonly) R
mb_skip_flag _
(B dices only) FL, cMax=1 0 24
. prefix and suffix prefix: 3 prefix: 27
mb_type (B slices only) as specified in subclause 9.3.2.5 sffixc5 | suffix: 32
sub_mb_type (B slices only) as specified in subclause 9.3.2.5 3 36
refix: 4 prefix: 40
mvd_10[J[1[0], mvd_I1[][][O] pren o
prefix and suffix as given by UEG3 suffix: na suffix: na (uses DecodeBypass)
ith signedValFlag=1, uCoff=9 . :
mvd 10[(][1], mvd_I1[][][1] with sign ag=1 uto prefix: 4 prefix: 47
- ' - suffix: na suffix: na (uses DecodeBypass)
ref_idx_I0, ref_idx_|1 U 2 54
mb_qgp_delta as specified in subclause 9.3.2.7 2 60
intra_chroma_pred_mode TU, cMax=3 1 64
prev_intradx4_pred_mode flag FL, cMax=1 0 68
rem_intradx4_pred_mode FL, cMax=7 0 69
mb_field_decoding_flag FL, cMax=1 0 70
prefix and suffix prefix: 3 prefix: 73
coded_block_pattern as specified in subclause 9.3.2.6 sffic 1 | suffix: 77
coded_block_flag FL, cMax=1 0 85
significant_coeff_flag _
(frame coded blocks only) FL, cMax=1 0 105
last_significant_coeff_flag _
(frame coded blocks only) FL, cMax=1 0 166
) prefix and suffix as given by UEGO prefix: 1 prefix: 227
coeff_abs Jevel_minusl with signedValFlag=0, uCoff=14 sffix: na | suffix: na, (uses DecodeBypass)
coeff_sign_flag FL, cMax=1 0 na, (uses DecodeBypass)
end_of_dlice flag FL, cMax=1 0 276
significant_coeff_flag _
(field coded blocks only) FL, cMax=1 0 2
last_significant_coeff_flag FL. cMax=1 0 338

(field coded blocks only)

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

9.3.21 Unary (U) binarization process
Input to this processis arequest for a U binarization for a syntax element.
Output of this processisthe U binarization of the syntax element.

The bin string of a syntax element having (unsigned integer) value synElVal is a hit string of length synElVal + 1
indexed by Binldx. The bins for binldx less than synElVal are equal to 1. The bin with binldx equal to synElVal is equal
to 0.

Table 9-25 illustrates the bin strings of the unary binarization for a syntax element.

Table 9-25 - Bin string of the unary binarization (infor mative)

Value of syntax element Bin string
0 0
1 1]0
2 1|11|0
3 1{1(1(0
4 1{1(1(1(0
5 1|1(1]1(1]0
binldx 0({1|2|3|4]|5

9.3.22 Truncated unary (TU) binarization process
Input to this processisarequest for a TU binarization for a syntax element and cMax.
Output of this processisthe TU binarization of the syntax element.

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in subclause 9.3.2.1
is invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins being
equal to 1.

NOTE — TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.23 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization process
Input to this processis arequest for a UEGK binarization for a syntax element, signedVaFlag and uCoff.
Output of this processisthe UEGK binarization of the syntax element.

A UEGK bin string is a concatenation of a prefix bit string and a suffix bit string. The prefix of the binarization is
specified by invoking the TU binarization process for the prefix part Min(uCoff, Abs(synElVal)) of a syntax element
value synElVal as specified in subclause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The UEGK bin string is derived as follows.

- If one of the following is true, the bin string of a syntax element having value synEIVa consists only of a prefix bit
string,

- signedValFlag is equa to 0 and the prefix bit string is not equal to the bit string of length uCoff with al bits
equal to 1.

- signedValFlag is equa to 1 and the prefix bit string is equal to the bit string that consists of a single bit with
value equal to 0.

- Otherwisg, the bin string of the UEGK suffix part of a syntax element value synElVal is specified by a process
equivalent to the following pseudo-code:

if(Abs(synElVa) >= uCoff) {
sufS= Abs(synElVa) - uCoff

DRAFT ITU-T Rec. H.264 (2002 E) 173

stopLoop =0

do{

if(sufS >= (1<<k)){
put(1)
sufS=sufS- (1<<k)
k++

} else{
put(0)
while(k- -)

put((sufS>>k) & 0x01)

stopLoop =1

}
} while('stopLoop)

}
if(signedvaFlag && synElvVa ! = Q)
if(synelva > 0)

put(0)
else

put(1)

NOTE — The specification for the k-th order Exp-Golomb (EGkK) code uses 1's and O's in reverse meaning for the unary part of the
Exp-Golomb code of 0-th order as specified in subclause 9.1.

9.3.24 Fixed-length (FL) binarization process
Input to this processis arequest for a FL binarization for a syntax element and cMax.
Output of this processisthe FL binarization of the syntax element.

FL binarization is constructed by using an fixedLength-bit unsigned integer bin string of the syntax element value,
where fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binldx =0
relates to the least significant bit with increasing values of binldx towards the most significant bit.

9.3.25 Binarization processfor macraoblock type and sub-macraoblock type

Input to this processis arequest for a binarization for syntax elements mb_type or sub_mb_type.
Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock typein | slicesis specified in Table 9-26.

For macroblock typesin Sl dlices, the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by by= ((mb_type == SI)? 0: 1). For the syntax
element value for which by is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which by is equal to 1, the binarization is given by concatenating the prefix by and the suffix bit string as specified in
Table 9-26 for macroblock typein | slicesindexed by subtracting 1 from the value of mb_typein Sl dlices.

174 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-26 — Binarization for macroblock typesin | slices

Value (name) of mb_type | Bin string

0(1_4x4) 0

1(1_16x16_0_0 0) 1 0 0 0 0 0
2(1_16x16 1 0 0) 1 0 0 0 0 1
3(1_16x16_2 0_0) 1 0 0 0 1 0
4(1_16x16_3 0 0) 1 0 0 0 1 1
5(1_16x16 0 1 0) 1 0 0 1 0 0 0
6(1_16x16_1 1 0) 1 0 0 1 0 0 1
7(1_16x16 2 1 0) 1 0 0 1 0 1 0
8(_16x16 3 1 0) 1 0 0 1 0 1 1
9(1_16x16 0 2 0) 1 0 0 1 1 0 0
10(1_16x16_1 2 0) 1 0 0 1 1 0 1
11 (1_16x16 2 2 0) 1 0 0 1 1 1 0
12 (1_16x16_3 2 0) 1 0 0 1 1 1 1
13(1_16x16_0_0_1) 1 0 1 0 0 0

14 (1_16x16_1_0_1) 1 o (1 |0 |o |1
15(1_16x16 2 0 1) 1 0 1 0 1 0

16 (I_16x16_3_0_1) 1 o [1 |0 |1 |1

17 (1_16x16_0_1_1) 1 |o |1 |1 |o |o |oO
18(1_16x16 1 1 1) 1 0 1 1 0 0 1
19 (1_16x16 2 1 1) 1 |o |1 |1 |o |1 |oO
20(1_16x16 3 1 1) 1 0 1 1 0 1 1
21(1_16x16 0 2 1) 1 0 1 1 1 0 0
22(1_16x16 1 2 1) 1 (o |1 |1 |1 |o |1
23(1_16x16 2 2 1) 1 0 1 1 1 1 0
24 (1_16x16_3_2 1) 1 o |1 |1 |1 |1 |1
25 (I_PCM) 1 1

binldx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B dlices are specified in
Table 9-27.

The bin string for | macroblock types in P and SP dlices corresponding to mb_type values 5 to 30 consists of a
concatenation of a prefix, which consists of a single bit with value equal to 1 as specified in Table 9-27 and a suffix as
specified in Table 9-26, indexed by subtracting 5 from the value of mb_type.

mb_type equal to 4 (P_8x8ref0) is not allowed..

DRAFT ITU-T Rec. H.264 (2002 E) 175

For | macroblock types in B slices (mb_type values 23 to 48) the binarization consists of bin strings specified as a
concatenation of a prefix bit string as specified in Table 9-27 and suffix bit strings as specified in Table 9-26, indexed by
subtracting 23 from the value of mb_type.

Table 9-27 — Binarization for macroblock typesin P, SP, and B slices

Slicetype | Value (name) of mb_type | Bin string
0 (P_LO_16x16) 0 0 0
1(P_LO_LO_16x8) 0 1 1
2(P_LO_LO_8x16) 0 1 0

P, SPdlice
3 (P_8x8) 0 0 1
4 (P_8x8ref0) na
510 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1(B_LO_16x16) 1 0 0
2(B_L1 16x16) 1 0 1
3 (B_Bi_16x16) 1 1 0 0 0 0
4(B_LO LO_16x8) 1 1 0 0 0 1
5(B_LO_LO_8x16) 1 1 0 0 1 0
6(B_L1 L1 16x8) 1 1 0 0 1 1
7(B_L1 L1 8x16) 1 1 0 1 0 0
8(B_LO L1 16x8) 1 1 0 1 0 1
9(B_LO L1 8x16) 1 1 0 1 1 0
10(B_L1_LO_16x8) 1 1 0 1 1 1
11 (B_L1 LO_8x16) 1 1 1 1 1 0

B dice
12 (B_LO_Bi_16x8) 1 1 1 0 0 0 0
13 (B_LO_Bi_8x16) 1 1 1 0 0 0 1
14 (B_L1 Bi_16x8) 1 1 1 0 0 1 0
15 (B_L1_Bi_8x16) 1 1 1 0 0 1 1
16 (B_Bi_L0O_16x8) 1 1 1 0 1 0 0
17 (B_Bi_LO 8x16) 1 1 1 0 1 0 1
18 (B_Bi_L1_16x8) 1 1 1 0 1 1 0
19 (B_Bi_L1 8x16) 1 1 1 0 1 1 1
20 (B_Bi_Bi_16x8) 1 1 1 1 0 0 0
21 (B_Bi_Bi_8x16) 1 1 1 1 0 0 1
22 (B_8x8) 1 1 1 1 1 1
23t048 (Intra, prefix only) | 1 1 1 1 0 1

binldx 0 1 2 3 4 5 6

176 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
For P, SP, and B dlices the specification of the binarization for sub_mb_typeis given in Table 9-28.

Table 9-28 — Binarization for sub-macroblock typesin P, SP, and B dlices

Slicetype | Value (name) of sub_mb_type | Bin string
0(P_LO_8x8) 1
1(P_LO 8x4) 0 0

P, SPdlice
2(P_LO 4x8) 0 1 1
3(P_LO 4x4) 0 1 0
0 (B_Direct_8x8) 0
1(B_L0O_8x8) 1 0 0
2(B_L1 8x8) 1 0 1
3(B_Bi_8x8) 1 1 0 0 0
4(B_LO 8x4) 1 1 0 0 1
5(B_L0_4x8) 1 1 0 1 0

B dlice 6(B_L1 8x4) 1 1 0 1 1
7(B_L1 4x8) 1 1 1 0 0 0
8 (B_Bi_8x4) 1 1 1 0 0 1
9 (B_Bi_4x8) 1 1 1 0 1 0
10 (B_LO_4x4) 1 1 1 0 1 1
11 (B_L1 4x4) 1 1 1 1 0
12 (B_Bi_4x4) 1 1 1 1 1

binldx 0 1 2 3 4 5

9.3.26 Binarization processfor coded block pattern
Input to this processis arequest for a binarization for the syntax element coded_block_pattern.
Output of this processis the binarization of the syntax element.

The binarization of coded_block_pattern consists of a concatenation of a prefix part and a suffix part. The prefix part of
the binarization is given by the FL binarization of CodedBlockPatternLuma with cMax = 15. The suffix part consists of
the TU binarization of CodedBlockPatternChroma with cMax = 2. The relationship between the value of the syntax
element coded_block_pattern and the values of CodedBlockPatternLuma and CodedBlockPatternChroma is given as
specified in subclause 7.4.5.

9.3.2.7 Binarization processfor mb_qp_delta
Input to this processis arequest for a binarization for the syntax element mb_qgp_delta.
Output of this process is the binarization of the syntax element.

The bin string of mb_gp_deltais derived by the U binarization of the mapped value of the syntax element mb_gp_delta,
where the assignment rule between the signed value of mb_gp_delta and its mapped value is given as specified in
Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinldxCtx, bypassFlag and ctxldxOffset as
specified in subclause 9.3.2.

Output of this processis the value of the syntax element.

DRAFT ITU-T Rec. H.264 (2002 E) 177

This process specifies how each bit of a bit string is parsed for each syntax element.

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies.

- If thebit string is equal to one of the bin strings, the corresponding value of the syntax element is the outpui.
- Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binldx isincremented by 1 starting with binldx being set equal to O for thefirst bin.

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part,, the
variable binldx is set equal to O for the first bin of each part of the bin string (prefix part or suffix part). In this case, after
parsing the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in subclauses
9.3.2.3 and 9.3.2.5 is invoked depending on the resulting prefix bit string as specified in subclauses 9.3.2.3 and 9.3.2.5.
Note that for the binarization of the syntax element coded block_pattern, the suffix bit string is present regardless of the
prefix bit string of length 4 as specified in subclause 9.3.2.6.

Depending on the variable bypassFlag, the following applies.

- If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.3.3.2.3 shall be applied for
parsing the value of the bins from the bitstream.

- Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:
1. Given binldx, maxBinldxCtx and ctxldxOffset, ctxldx is derived as specified in subclause 9.3.3.1.

2. Given ctxldx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

9.3.3.1 Derivation process for ctxldx
Inputs to this process are binldx, maxBinldxCtx and ctxldxOffset.
Output of this processis ctxldx.

Table 9-29 shows the assignment of ctxldx increments (ctxldxInc) to binldx for all ctxldxOffset values except those
related to the syntax elements coded block flag, significant _coeff flag, last significant coeff flag, and
coeff_abs level _minusl.

The ctxldx to be used with a specific binldx is specified by first determining the ctxldxOffset associated with the given
bin string or part thereof. The ctxldx is determined as follows.

- If the ctxldxOffset is listed in Table 9-29, the ctxldx for a binldx is the sum of ctxldxOffset and ctxldxInc, which is
found in Table 9-29. When more than one vaue is listed in Table 9-29 for a binldx, the assignment process for
ctxldxInc for that binldx is further specified in the subclauses given in parenthesis of the corresponding table entry.

- Otherwise (ctxldxOffset is not listed in Table 9-29), the ctxldx is specified to be the sum of the following terms:
ctxldxOffset and ctxldxBlockCatOffset(ctxBlockCat) as specified in Table9-30 and ctxldxInc(ctxBlockCat).
Subclause 9.3.3.1.3 specifies which ctxBlockCat is used. Subclause 9.3.3.1.1.9 specifies the assignment of
ctxldxInc(ctxBlockCat) for coded block flag, and subclause 9.3.3.1.3 specifies the assignment of
ctxldxInc(ctxBlockCat) for significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minusl.

All binswith binldx greater than maxBinldxCtx are parsed using ctxldx assigned to maxBinldxCtx.

All entries in Table 9-29 labelled with “na’ correspond to values of binldx that do not occur for the corresponding
ctxldxOffset.

ctxldx =276 is assigned to the binldx of mb_type indicating the |_PCM mode. For parsing the value of the
corresponding bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in
subclause 9.3.3.2.4 shall be applied.

178 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-29 — Assignment of ctxldxInc to binldx for all ctxl dxOffset values except thoserelated to the syntax
elements coded_block flag, significant_coeff flag, last_significant_coeff flag, and coeff abs level minusl

binldx
ctxl dxOffset 0 1 5 3 4 5 =5
0 012 na na na na na na
(subclause 9.3.3.1.1.3)
01,2 B 56 6,7
8 (subclause 9.3.3.1.1.3) cixldx=276 3 4 (subclause | (subclause 7
93.312) | 933.1.2)
11 012 na na na na na na
(subclause 9.3.3.1.1.1)
2,3
14 0 1 (subclavise na na na na
9.3.3.1.2)
2,3
17 0 ctxldx=276 1 2 (subclause 3 3
9.3.3.1.2)
21 0 1 2 na na na na
0,1,2
24 (subdlause 9.3.3.1.1.1) na na na na na na
45
012 3 (subclause
27 (subclause 9.3.3.1.1.3) 9.3.3.1.2) 5 5 5 5
2,3
32 0 ctxldx=276 1 2 (subclause 3 3
9.33.1.2)
2,3
36 0 1 (subclause 3 3 3 na
9.3.3.1.2)
01,2
40 (subclause 9.3.3.1.1.7) 3 4 5 6 6 6
01,2
47 (subclause 9.3.3.1.1.7) B 4 5 6 6 6
01,23
4 (subclause 9.3.3.1.1.6) 4 5 5 & 5 >
0,1
60 (subclause 9.3.3.1.1.5) 2 3 3 3 3 3
01,2
64 (subdlause 9.3.3.1.1.8) 3 3 na na na na
68 0 na na na na na na
69 0 0 0 na na na na
0,1,2
70 (subdlause 9.3.3.1.1.2) na na na na na na
0123 01,23 01,23 01,23
73 e (subclause | (subclause | (subclause na na na
(subdlause9.33.1.14) | 953714y | 9331.14) | 9.331.14)
4,5,6,7
7 (subd] auoselgs?s 1.1.4) (subclause na na na na na
""" 9.3.3.1.14)
276 0 na na na na na na

Table9-30 shows the values of ctxldxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded_block_flag, significant_coeff flag, last_significant_coeff_flag, and coeff_abs level _minusl. The specification of
ctxBlockCat is given in Table 9-32.

DRAFT ITU-T Rec. H.264 (2002 E) 179

Table 9-30 — Assignment of ctxl dxBlock CatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff_flag, last_significant_coeff flag, and coeff_abs level _minusl

ctxBlockCat (as specified in Table 9-32)
Syntax element

0 1 2 3 4
coded_block_flag 0 4 8 12 16
significant_coeff_flag 0 15 29 44 47
last_significant_coeff_flag | O 15 29 44 a7
coeff_abs level_minusl 0 10 20 30 39

9.3.3.1.1 Assignment process of ctxldxlnc using neighbouring syntax elements

Subclause 9.3.3.1.1.1 specifies the derivation process of ctxldxInc for the syntax element mb_skip flag.

Subclause 9.3.3.1.1.2 specifies the derivation process of ctxldxInc for the syntax element mb_field_decoding_flag.
Subclause 9.3.3.1.1.3 specifies the derivation process of ctxldxInc for the syntax element mb_type.

Subclause 9.3.3.1.1.4 specifies the derivation process of ctxldxInc for the syntax element coded_block_pattern.
Subclause 9.3.3.1.1.5 specifies the derivation process of ctxldxInc for the syntax element mb_gp_delta.

Subclause 9.3.3.1.1.6 specifies the derivation process of ctxldxInc for the syntax elementsref_idx_|0 and ref_idx_11.
Subclause 9.3.3.1.1.7 specifies the derivation process of ctxldxInc for the syntax elements mvd_|0 and mvd_11.
Subclause 9.3.3.1.1.8 specifies the derivation process of ctxldxInc for the syntax element intra_chroma_pred_mode.

Subclause 9.3.3.1.1.9 specifies the derivation process of ctxldxInc for the syntax element coded block_flag.

9.3.3.1.1.1 Derivation processof ctxldxInc for the syntax element mb_skip_flag
Output of this process is ctxldxInc.

When MbaffFrameFlag is equal to 1 and mb_field_decoding_flag has not been decoded (yet) for the current macroblock
pair with top macroblock address 2* (CurrMbAddr/2), the inference rule for the syntax element
mb_field_decoding_flag as specified in subclause 7.4.4 shall be applied.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 isinvoked and the output is assigned
to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

- If mbAddrN is not available or mb_skip_flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set equal
to 0.

- Otherwise (mbAddrN is available and mb_skip_flag for the macroblock mbAddrN is equal to 0), condTermFlagN is
set equal to 1.

The variable ctxldxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB (9-1)

9.3.3.1.1.2 Derivation processof ctxldxInc for the syntax element mb_field_decoding_flag
Output of this processis ctxldxInc.

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames as specified in
subclause 6.4.6 is invoked and the output is assigned to mbAddrA and mbAddrB.

When both macroblocks mbAddrN and mbAddrN + 1 have mb_type equal to P_Skip or B_Skip, the inference rule for
the syntax element mb field decoding flag as specified in subclause 7.4.4 shall be applied for the macroblock
mbAddrN.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

- If any of the following conditionsistrue, condTermFlagN is set equal to O,

180 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- mbAddrN is not available

- the macroblock mbAddrN is a frame macrobl ock.
- Otherwise, condTermFlagN is set equal to 1.
The variable ctxldxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB (9-2)

9.3.3.1.1.3 Derivation process of ctxldxInc for the syntax element mb_type
Input to this process is ctxldxOffset.
Output of this processis ctxldxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 isinvoked and the output is assigned
to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
- If any of thefollowing conditionsis true, condTermFlagN is set equal to O

- mbAddrN is not available

- ctxldxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to Sl

- ctxldxOffset is equal to 3 and mb_type for the macroblock mbAddrN isequal to |_4x4

- ctxldxOffset is equal to 27 and the macroblock mbAddrN is skipped

- ctxldxOffset is equal to 27 and mb_type for the macroblock mbAddrN is equal to B_Direct_16x16
- Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived as

ctxldxlnc = condTermFlagA + condTermFlagB (9-3)

9.3.3.1.1.4 Derivation processof ctxldxInc for the syntax element coded_block_pattern
Inputs to this process are ctxldxOffset and binldx.

Output of this processis ctxldxInc.

Depending on the value of the variable ctxldxOffset, the following applies.

- If ctxldxOffset is equal to 73, the following applies

- The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.7.2 is invoked with
luma8x8Blkldx = binldx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BlkldxA, and
luma8x8BlkIdxB.

- Letthevariable condTermFlagN (with N being either A or B) be derived as follows.
- If any of the following conditionsis true, condTermFlagN is set equal to 0
- mbAddrN is not available
- mb_type for the macroblock mbAddrN is equal to | PCM

- the macroblock mbAddrN is not skipped and ((CodedBlockPatternLuma >> luma8x8BIkIdxN) & 1) is
not equal to O for the macroblock mbAddrN

- Otherwise, condTermFlagN is set equal to 1.

- Thevariable ctxldxInc is derived as

ctxldxInc = condTermFlagA + 2 * condTermFlagB (9-4)

- Otherwise (ctxldxOffset is equal to 77), the following applies.

- The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

DRAFT ITU-T Rec. H.264 (2002 E) 181

- Letthevariable condTermFlagN (with N being either A or B) be derived asfollows.

- If mbAddrN isavailable and mb_type for the macroblock mbAddrN is equal to|_PCM, condTermFlagN is set
equal to 1

- Otherwiseg, if any of the following conditionsis true, condTermFlagN is set equal to O

- mbAddrN is not available or the macroblock mbAddrN is skipped

- binldx isequal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to O

- binldx isequal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2
- Otherwise, condTermFlagN is set equal to 1.

- Thevariable ctxldxInc is derived as
ctxldxinc = condTermFlagA + 2 * condTermFlagB + ((binldx == 1)?4:0) (9-5)

NOTE —When a macroblock uses an Intra_16x16 prediction mode, the values of CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock are derived from mb_type as specified in Table 7-8.

9.3.3.1.1.5 Derivation processof ctxldxInc for the syntax element mb_qp_delta
Output of this process is ctxldxInc.

Let prevMbAddr be the macroblock address of the macroblock that precedes the current macroblock in decoding order.
When the current macroblock is the first macroblock of a slice, prevMbAddr is marked as not available.

Let the variable ctxldxInc be derived as follows.

- If any of the following conditionsis true, ctxldxInc is set equal to O
- prevMbAddr is not available or the macroblock prevMbAddr is skipped
- mb_type of the macroblock prevMbAddr isequal to |_PCM

- The macroblock prevMbAddr is not coded in Intra 16x16 prediction mode and both CodedBlockPatternLuma
and CodedBlockPatternChroma for the macroblock prevMbAddr are equal to O

- mb_gp_deltafor the macroblock prevMbAddr is equal to O
- Otherwise, ctxldxInc is set equal to 1.

9.3.3.1.1.6 Derivation process of ctxldxInc for the syntax elementsref_idx_|0and ref_idx_I1
Inputs to this process are mbPartldx and the reference picture list suffix IX, where X =0 or 1.
Output of this process is ctxldxlInc.

The derivation process for neighbouring partitions specified in subclause 6.4.7.5 is invoked with mbPartldx and
subMbPartldx = 0 as input and the output is assigned to mbAddrA\mbPartldxA and mbAddrB\mbPartl dxB.

With ref_idx_IX[mbPartldxN] (with N being either A or B) specifying the syntax element for the macroblock
mbAddrN, let the variable refldxZeroFlagN be derived as follows.

- If MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock

refldxZeroFlagN = ((ref_idx_IX[mbPartldxN] >1)?0:1) (9-6)
- Otherwise,
refldxZeroFlagN = ((ref_idx_IX[mbPartldxN] >0)?0:1) (9-7)

Let the variable predM odeEqual Flag be specified as follows.
- If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

- If SubMbPredMode(sub_mb_typel mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to 0, where sub_mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.

182 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- Otherwise, the following applies.

- If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to O, where mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
- If any of the following conditionsistrue, condTermFlagN is set equal to O

- mbAddrN is not available

- the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip

- The macroblock mbAddrN is coded in Intra prediction mode

- predModeEqualFlag isequal to 0

- refldxZeroFlagN isequal to 1
- Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived as

ctxldxinc = condTermFlagA + 2 * condTermFlagB (9-8)

9.3.3.1.1.7 Derivation process of ctxldxlnc for the syntax elements mvd_I0 and mvd_I1
Inputs to this process are mbPartldx, subMbPartldx, the reference picture list suffix 1X, and ctxldxOffset
Output of this processis ctxldxInc.

The derivation process for neighbouring partitions specified in subclause 6.4.7.5 is invoked with mbPartldx and
subMbPartldx as input and the output is assigned to mbAddrA\mbPartldxA\subMbPartldxA and
mbA ddrB\mbPartl dxB\subMbPartl dxB.

Let the variable compldx be derived as follows.

- If ctxldxOffset is equal to 40, compldx is set equal to O.

- Otherwise (ctxldxOffset is equal to 47), compldx is set equal to 1.

Let the variable predM odeEqual Flag be specified as follows.

- If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

- If SubMbPredMode(sub_mb_typel mbPartldxN]) is not equal to Pred LX and not egual to BiPred,
predModeEqualFlag is set equal to 0, where sub_mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.
- Otherwise, the following applies.

- If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to O, where mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.
Let the variable absMvdCompN (with N being either A or B) be derived as follows.
- If any of the following conditionsis true, absMvdCompN is set equal to 0
- mbAddrN is not available
- the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip
- The macroblock mbAddrN is coded in Intra prediction mode
- predModeEqualFlag isequal to 0

- Otherwise, the following applies

DRAFT I TU-T Rec. H.264 (2002 E) 183

- If compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the
macroblock mbAddrN is afield macroblock

absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) * 2 (9-9)

- Otherwise, if compldx is equa to 1, MbaffFrameFlag is equal to 1, the current macroblock is a field macroblock,
and the macroblock mbAddrN is a frame macroblock

absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) /2 (9-10)
- Otherwise,
absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) (9-11)

The variable ctxldxInc is derived as follows

- If (absMvdCompA + absMvdCompB) isless than 3, ctxldxInc is set equal to 0.

- Otherwise, if (absMvdCompA + absMvdCompB) is greater than 32, ctxldxInc is set equal to 2.

- Otherwise ((absMvdCompA + absMvdCompB) isin the range of 3 to 32, inclusive), ctxldxInc is set equal to 1.

9.3.3.1.1.8 Derivation process of ctxldxInc for the syntax element intra_chroma_pred_mode
Output of this processis ctxldxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being replaced by either A or B) be derived as follows.
- If any of the following conditionsis true, condTermFlagN is set equal to O
- mbAddrN is not available
- The macroblock mbAddrN is coded in Inter prediction mode
- mb_type for the macroblock mbAddrN isequal to | _PCM
- intra_chroma_pred_mode for the macroblock mbAddrN is equal to O
- Otherwise, condTermFlagN is set equal to 1.
The variable ctxldxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB (9-12)

9.3.3.1.1.9 Derivation processof ctxldxInc for the syntax element coded_block_flag

Input to this process is ctxBlockCat and additional input is specified as follows.

- If ctxBlockCat is equal to 0, no additional input

- Otherwise, if ctxBlockCat isequal to 1 or 2, lumadx4Blkldx

- Otherwise, if ctxBlockCat is equal to 3, the chroma component index iCbCr

- Otherwise (ctxBlockCat is equal to 4), chromadx4BIlkldx and the chroma component index compl dx
Output of this processis ctxldxInc(ctxBlockCat).

Let the variable transBlockN (with N being either A or B) be derived as follows.

- If ctxBlockCat is equal to 0, the following applies.

- The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

- Thevariable transBlockN is derived as follows.

- If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 prediction mode, the lumaDC
block of macroblock mbAddrN is assigned to transBlockN

- Otherwise, transBlockN is marked as not available.

184 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Otherwise, if ctxBlockCat is equal to 1 or 2, the following applies.

- The derivation process for neighbouring 4x4 Iuma blocks specified in subclause 6.4.7.3 is invoked with
lumadx4Blkldx as input and the output is assigned to mbAddrN, lumadx4BIkldxN (with N being either A or B).

- ThevariabletransBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is
not equal to |_PCM, and ((CodedBlockPatternLuma >> (lumadx4BIkldxN >>2)) & 1) isnot equal to O for
the macroblock mbAddrN, the 4x4 luma block with lumadx4BlkldxN of macroblock mbAddrN is assigned to
transBlockN.

- Otherwise, transBlockN is marked as not available.
Otherwiseg, if ctxBlockCat is equal to 3, the following applies.

- The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

- ThevariabletransBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is
not equal to I_PCM, and CodedBlockPatternChroma is not equal to O for the macroblock mbAddrN, the
chroma DC block of chroma component iCbCr of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.
Otherwise (ctxBlockCat is equal to 4), the following applies.

- The derivation process for neighbouring 4x4 chroma blocks specified in subclause 6.4.7.4 is invoked with
chromadx4BIKkldx as input and the output is assigned to mbAddrN, chromadx4BIkldxN (with N being either A or
B).

- Thevariable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is
not equal to | _PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, the 4x4
chroma block with chromadx4BIkldxN of the chroma component iCbCr of macroblock mbAddrN is assigned
to transBlockN.

- Otherwise, transBlockN is marked as not available.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

If any of the following conditionsis true, condTermFlagN is set equal to 0
- mbAddrN isnot available and the current macroblock is coded in Inter prediction mode

- mbAddrN isavailable and transBlockN is not available and mb_type for the macroblock mbAddrN is not equal to
|_PCM

- The current macroblock is coded in Intra prediction mode, constrained_intra pred flag is equal to1, the
macroblock mbAddrN is available and coded in Inter prediction mode, and slice data partitioning is in use
(nal_unit_typeisin the range of 2 through 4, inclusive).

Otherwise, if any of the following conditionsis true, condTermFlagN is set equal to 1
- mbAddrN isnot available and the current macroblock is coded in Intra prediction mode
- mb_type for the macroblock mbAddrN isequal to | _PCM

Otherwise, condTermFlagN is set equal to the value of the coded block_flag of the transform block transBlockN that
was decoded for the macroblock mbAddrN.

The variable ctxldxInc(ctxBlockCat) is derived by

ctxldxInc(ctxBlockCat) = condTermFlagA + 2 * condTermFlagB (9-13)

9.3.3.1.2 Assignment process of ctxldxInc using prior decoded bin values

Inputs to this process are ctxldxOffset and binldx.

Output of this processis ctxldxInc.

DRAFT I TU-T Rec. H.264 (2002 E) 185

Table 9-31 contains the specification of ctxldxlInc for the given values of ctxldxOffset and binldx.

For each value of ctxldxOffset and binldx, ctxldxInc is derived by using some of the values of prior decoded bin values
(b, by, bs,..., by), where the value of the index k isless than the value of binldx.

Table 9-31 — Specification of ctxldxInc for specific values of ctxldxOffset and binldx

Value (name) of ctxldxOffset | binldx ctxldxInc

4 (bs 1= 0)?5:6
3

5 (bs 1= 0)?6:7
14 2 (by 1= 1)?2:3
17 4 (bs 1= 07?23
27 2 (b, '= 0)?4:5
32 4 (bs 1= 07?23
36 2 (by 1= 07?23

9.3.3.1.3 Assignment process of ctxldxlnc for syntax elements significant_coeff_flag, last_significant_coeff_flag,
and coeff_abs level _minusl

Inputs to this process are ctxldxOffset and binldx.
Output of this processis ctxldxlInc.

The assignment process of ctxldxinc for syntax elements significant _coeff flag, last significant coeff flag, and
coeff_abs level_minusl as well as for coded_block_flag depends on categories of different blocks denoted by the
variable ctxBlockCat. The specification of these block categoriesis given in Table 9-32.

Table 9-32 — Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff ctxBlockCat

block of luma DC transform coefficient levels (for macroblock coded in Intra_16x16

- 16 0
prediction mode)
block of luma AC transform coefficient levels (for macroblock coded in Intra_16x16

- 15 1
prediction mode)
block of luma transform coefficient levels (for macroblock not coded in Intra_16x16

o 16 2
prediction mode)
block of chroma DC transform coefficient levels 4 3
block of chroma AC transform coefficient levels 15 4

For the syntax elements significant_coeff flag and last_significant_coeff flag the scanning position scanningPos within
the regarded block is assigned to ctxldxlnc, where scanningPos ranges from 0 to maxNumCoeff - 2, inclusive:

ctxldxInc = scanningPos (9-14)

The scanning position for frame coded blocks relates to the zig-zag scan; the scanning position for field coded blocks
relates to the field scan.

Let numDecodAbsLevelEql denotes the accumulated number of decoded transform coefficient levels with absolute
value equal to 1, and let humDecodAbsLevelGtl denotes the accumulated number of decoded transform coefficient
levels with absolute value greater than 1. Both numbers are related to the same transform coefficient block, where the
current decoding process takes place. Then, for decoding of coeff abs level minusl, ctxldxlnc for
coeff_abs level_minusl is specified depending on binldx as follows.

- If binldx isequal to O, ctxldxInc is derived by

186 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
ctxldxinc = ((numDecodAbsLevelGtl '=0) ?0: Min(4, 1 + numDecodAbsLevelEql)) (9-15)

- Otherwise (binldx is greater than 0), ctxldxInc is derived by

ctxldxlnc = 5 + Min(4, numDecodAbsLevel Gt1) (9-16)

9.3.3.2 Arithmetic decoding process

Inputs to this process are the bypassFlag, ctxldx as derived in subclause 9.3.3.1, and the state variables codlRange and
codl Offset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-2 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index ctxldx is passed to the arithmetic decoding process DecodeBin(ctxldx), which is specified as follows.

- If bypassFlag is equal to 1, DecodeBypass() as specified in subclause 9.3.3.2.3 is invoked.

- Otherwise, if bypassFlag is equal to 0 and ctxldx is equal to 276, DecodeTerminate() as specified in subclause
9.3.3.2.4 isinvoked.

- Otherwise (bypassFlag is equal to 0 and ctxldx is not equal to 276), DecodeDecision() as specified in subclause
9.3.3.2.1 shdll be applied.

DecodeBin(ctxldx)

bypassFlag
Yesﬁ
No
|

DecodeBypass

L
Yesj

DecodeTerminate

No
|

DecodeDecision(ctxldx)

Done

DRAFT ITU-T Rec. H.264 (2002 E) 187

9.3.3.2.1 Arithmetic decoding processfor a binary decision

Inputs to this process are ctxldx, codlRange, and codl Offset.

Outputs of this process are the decoded value binVal, and the updated variables codl Range and codl Offset.
Figure 9-3 shows the flowchart for decoding a single decision (DecodeDecision).

1. Thevalue of the variable codlRangelL PSis derived as follows.

- Given the current value of codlRange, the variable qCodl Rangel dx is derived by

gCodlRangeldx =(codlRange >> 6) & 0x03 (9-17)

- Given gCodlRangeldx and pStatel dx associated with ctxldx, the value of the variable rangeTabL PS as specified
in Table 9-33 isassigned to codl RangeL PS:

codlRangeL PS = rangeTabL P pStatel dx][qCodlRangel dx] (9-18)

2. Thevariable codlRange is set equal to codlRange - codlRangel PS and the following applies.

- If codlOffset is greater than or equal to codl Range, the variable binVal is set equal to 1 - valMPS, codl Offset is
decremented by codl Range, and codlRange is set equal to codlRangel PS.

- Otherwise, the variable binVal is set equal to valMPS.

Given the value of binVal, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the
current value of codl Range, renormalization is performed as specified in subclause 9.3.3.2.2.

933211 Statetransition process

Inputs to this process are the current pStateldx, the decoded value binvVal and valMPS values of the context variable
associated with ctxldx.

Outputs of this process are the updated pStatel dx and valM PS of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateldx and valM PS associated with ctxldx is
derived asfollows:

if(binval == vaMPS)
pStateldx = transldxM PS(pStatel dx)
else{ (9-19)
if(pStateldx == 0)
vaMPS=1- vaMPS
pStateldx = transldxL PS(pStatel dx)
}

Table 9-34 specifies the transition rules transldxMPS() and transldxLPS() after decoding the value of valMPS and
1- valMPS, respectively.

188 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

T&RG,5DQHJ O [FRG5DQH !
FRG,5 DQUH 360 [UDQIH7 DE/ 36356 \W,G @T&RG,5 DI HG] @
FRG,5 DQUHJFRG,5 DQUHI RG,5DQIH 36

<HV- FRG2 |IVHWI [FRG,5 DQIH

|

ELCP DOIYDD 36
FRG2 [IVHMIFRG, 2 | VHARG; 5 DQU H
FRG,5 DQ HIFRG,5 DQH 36

ELGB DOIYDO 36
S6VBMG O TADQV,G 0 3656 \MM G @

Se\WMG O [<HV
‘ !

‘ YDO 3601 (YDD 36

1R

£

S6VDME O DQV,Gl / 36356\ G @

SHQRWP'

Figure 9-3 — Flowchart for decoding a decision

DRAFT ITU-T Rec. H.264 (2002 E)

189

Table 9-33 — Specification of rangeT abL PS depending on pStatel dx and qCodl Rangel dx

gCodl Rangel dx gCodl Rangel dx
pStatel dx pStatel dx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 7 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 % 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

190 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-34 — State transition table

pStatel dx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
transldxL PS 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transldxMPS | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStatel dx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

transldxL PS 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24

transldxMPS | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pStatel dx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

transldxL PS 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33

transldxMPS | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

pStatel dx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

transldxL PS 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63

transldxMPS | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

9.3.3.2.2 Renormalization processin the arithmetic decoding engine
Inputs to this process are bits from dlice data and the variables codlRange and codl Offset.
Outputs of this process are the updated variables codl Range and codl Of fset.

A flowchart of the renormalization is shown in Figure 9-4. The current value of codlRange is first compared to 0x0100
and further steps are specified as follows.

- If codIRange is greater than or equal to 0x0100, no renormalization is needed and the RenormD process is finished;

- Otherwise (codlRange is less than 0x0100), the renormalization loop is entered. Within this loop, the value of
codlRangeis doubled, i.e., left-shifted by 1 and asingle bit is shifted into codl Offset by using read_bits(1).

codIRange< 0x0100

Yes

codIRange = codIRange << 1
codIOffset = codlOffset << 1
codIOffset = codlOffset | read_bits(1)

DRAFT ITU-T Rec. H.264 (2002 E) 191

The bypass decoding process is invoked when bypassFlag is equal tol. Figure9-5 shows a flowchart of the
corresponding process.

First, the value of codlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codlOffset by using
read bits(1). Then, the value of codlOffset is compared to the value of codlRange and further steps are specified as
follows.

- If codlOffset is greater than or equal to codlRange, the variable binVal is set equal to 1 and codlOffset is
decremented by codl Range.

- Otherwise (codl Offset is less than codlRange), the variable binVal is set equal to 0.

DecodeBypass

codlOffset = codlOffset << 1
codlOffset = cod|Offset | read_bits(1)

Yes cod|Offset >= No
F codIRange W

binVal =1
codlOffset = codlOffset - codIRange

binVal =0

192 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

‘ FRG,5 DQI HIFRG5 DQIH ‘
<»~ 1
EICO D ELQO DO

Figure 9-6 — Flowchart of decoding a decision befor e ter mination

9.3.4 Arithmetic encoding process (informative)

This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are decisions that are to be encoded and written.

Outputs of this process are bits that are written to the RBSP.

This informative subclause describes an arithmetic encoding engine that matches the arithmetic decoding engine
described in subclause 9.3.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures
are caled in the same order. The following procedures are described in this section: InitEncoder, EncodeDecision,
EncodeBypass, EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and
DecodeTerminate, respectively. The state of the arithmetic encoding engine is represented by a value of the variable
codlLow pointing to the lower end of a sub-interval and a value of the variable codl Range specifying the corresponding
range of that sub-interval.

9.34.1 Initialisation processfor the arithmetic encoding engine (infor mative)
This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked before encoding the first macroblock of a dlice, and after encoding the pcm_alignment_zero_bit
and all pcm_byte data for a macroblock of type | _PCM.

Outputs of this process are the values codlLow, codlRange, firstBitFlag, bitsOutstanding, and symCnt of the arithmetic
encoding engine.

In the initialisation procedure of the encoder, codlLow is set equal to 0, and codlRange is set equal to OXO1FE.

Furthermore, afirstBitFlag is set equal to 1, and bitsOutstanding and symCnt counters are set equal to 0.

NOTE — The minimum register precision required for codlLow is 10 bits and for CodIRange is 9 bits. The precision required for
the counters bitsOutstanding and symCnt should be sufficiently large to prevent overflow of the related registers. When
MaxBinCountInSlice denotes the maximum total number of binary decisions to encode in one dlice, the minimum register
precision required for the variables bitsOutstanding and symCnt is given by Ceil(Log2(MaxBinCountInSlice + 1)).

9.3.4.2 Encoding processfor a binary decision (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the context index ctxldx, the value of binVal to be encoded, and the variables codl Range,
codlLow and symCnt.

Outputs of this process are the variables codl Range, codlLow, and symCnt.

Figure 9-7 shows the flowchart for encoding a single decision. In a first step, the variable codlRangeL PS is derived as
follows.

Given the current value of codlRange, codlRange is mapped to the index qCodlIRangeldx of a quantised value of
codlRange by using Equation 9-17. The value of qCodlIRangeldx and the value of pStateldx associated with ctxldx are
used to determine the value of the variable rangeTabL PS as specified in Table 9-33, which is assigned to codl RangeL PS.
The value of codlRange — codlRangel PS is assigned to codl Range.

DRAFT I TU-T Rec. H.264 (2002 E) 193

In a second step, the value of binVal is compared to valMPS associated with ctxldx. When binval is different from
valMPS, codlRange is added to codlLow and codlRange is set equal to the value codlRangel PS. Given the encoded
decision, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current value of
codlRange, renormalization is performed as specified in subclause 9.3.4.3. Finaly, the variable symCnt is incremented

by 1.

@codeDecision(ctxldx,binVaD

|

gqCodIRangeldx = (codIRange >> 6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codIRange = codIRange - codlRangeLPS

Yes binVal !=
T valMPS

codiLow = codlLow + codIRange No
codIRange = codlRangeLPS

pStateldx != 0

pStateldx = transldxLPS[pStateldx] pStateldx = transldxMPS[pStateldx]

NOT

valMPS = 1 - valMPS

RenormE

symCnt = symCnt + 1
\

Done

194 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

codIRange < 0x100

codlLow < 0x100

Yes No codlLow >= 0x200 Yes
codlLow = codILow - 0x100 _
bitsOutstanding = bitsOutstanding + 1 codiLow = codiLow - 0x200
No |
PutBit(0) PutBit(1)

codlLow = codlLow <<

codIRange = codIRange << 1

1

PutBit(B)

firstBitFlag = 0

frotiteiag
TY%WNOT

WriteBits(B, 1)

1

bitsOutstaWYesj

1

No

WriteBits(1 - B, 1)

bitsOutstanding = bitsOutstanding - 1

]

DRAFT ITU-T Rec. H.264 (2002 E)

195

Inputs to this process are the variables binVal, codlL ow, codlRange, bitsOutstanding, and symCnt.

Output of this process is a bit written to the RBSP and the updated variables codlLow, codlRange, bitsOutstanding, and
symCnt.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the
specification of this process as given in Figure 9-10.

EncodeBypass(binVal)

codlLow = codlLow << 1

binVal =0

TYes

codlLow = codlLow + codIRange

No
\
codlLow >=
No 0x400 Yes
Yes codlLow < 0x200
PutBit(1)
No \
PutBit(0) codlLow = codILow - 0x400

codlLow = codiLow - 0x200
bitsOutstanding = bitsOutstanding + 1

|

symCnt = symCnt + 1

196 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

EncodeTerminate(binVal)

codIRange = codIRange - 2

codlLow = codILow + codIRange
I RenormE

EncodeFlush

symCnt = symCnt + 1

(QFRGH) VK

FRG,5 DQIHO

5HQRWP (

v

3XWAMRG/ RZ O !

!

: UMAWERG/ Rz0O ! 0

Figure 9-12 — Flowchart of flushing at termination

9.34.6 Bytestuffing process (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
This processis invoked after encoding the last macroblock of the last dice of a picture and after encapsulation.

Inputs to this process are the number of bytes NumBytesinVcINALunits of all VCL NAL units of a picture, the number
of macroblocks PicSizelnMbs in the picture, and the number of binary symbols BinCountsInNALunits resulting from
encoding the contents of all VCL NAL units of the picture.

Outputs of this process are zero or more bytes appended to the NAL unit.

DRAFT ITU-T Rec. H.264 (2002 E) 197

Let the variable k be set equal to Ceil((Cell((3 * BinCountsinNALunits — 3 * 96 * PicSizelnMbs) / 32) —
NumBytesInVcINALunits) / 3). Depending on the variable k the following applies.

- Ifkislessthan or equal to O, no cabac zero word is appended to the NAL unit.

- Otherwise (k is greater than0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after
encapsulation, where the first two bytes 0x0000 represent a cabac zero_word and the third byte 0x03 represents an
emulation_prevention_three byte.

Annex A

Profilesand levels
(This annex forms an integral part of this Recommendation | International Standard)

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the bitstreams.
Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE - This Recommendation | International Standard does not include individually selectable “options’ at the decoder, as this
would increase interoperability difficulties.

Each profile specifies a subset of agorithmic features and limits that shall be supported by all decoders conforming to
that profile.

NOTE — Encoders are not required to make use of any particular subset of features supported in a profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this
Recommendation | International Standard. The same set of level definitions is used with al profiles, but individua
implementations may support a different level for each supported profile. For any given profile, levels generally
correspond to decoder processing |oad and memory capability.

A.1l Requirementson video decoder capability

Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the
ability to decode video streams conforming to the constraints of profiles and levels specified in this Annex. For each
such profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile idc and level idc. All other values of
profile idc and level _idc are reserved for future use by ITU-T | ISO/IEC.

NOTE - Decoders should not infer that when a reserved value of profile_idc or level_idc falls between the values specified in this
Recommendation | International Standard that this indicates intermediate capabilities between the specified profiles or levels, as
there are no restrictions on the method to be chosen by ITU-T | 1SO/IEC for the use of such future reserved values.

A.2 Profiles
A.21 Basdineprofile

Bitstreams conforming to the Baseline profile shall obey the following constraints:
— Only | and P dlice types may be present.
— NAL unit streams shall not contain nal_unit_type valuesin the range of 2 to 4, inclusive.
— Sequence parameter sets shall have frame_mbs_only_flag equal to 1.
— Picture parameter sets shall have weighted pred flag and weighted_bipred idc both equal to O.
— Picture parameter sets shall have entropy_coding_mode_flag equal to O.
— Picture parameter sets shall have num_slice_groups_minusl in the range of 0 to 7, inclusive.
— Thelevel constraints specified for the Baseline profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the Baseline profile is specified by profile_idc being equal to 66.

Decoders conforming to the Baseline profile at a specific level shal be capable of decoding all bitstreams in which
profile_idc isequal to 66 or constraint_setO_flag is equal to 1 and in which level_idc represents alevel less than or equal
to the specified level.

A.22 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:
— Only I, P, and B dlice types may be present.

198 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

— NAL unit streams shall not contain nal_unit_type valuesin the range of 2 to 4, inclusive.
— Arbitrary dlice order is not allowed.

— Picture parameter sets shall have num_slice_groups_minusl equal to O only.

— Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

— Thelevel constraints specified for the Main profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the Main profileis specified by profile_idc being equal to 77.

Decoders conforming to the Main profile at a specified level shall be capable of decoding all bitstreams in which
profile_idc is equal to 77 or constraint_setl flagisequal to 1 and in which level_idc represents alevel less than or equal
to the specified level.

A.2.3 Extended profile
Bitstreams conforming to the Extended profile shall obey the following constraints:
— Sequence parameter sets shall have direct_8x8_inference flag equal to 1.
— Picture parameter sets shall have entropy_coding_mode flag equal to 0.
— Picture parameter sets shall have num_slice_groups minusl in the range of 0 to 7, inclusive.
— Thelevel constraints specified for the Extended profile in subclause A.3 shall be fulfilled.
Conformance of a bitstream to the Extended profile is specified by profile idc being equal to 88.

Decoders conforming to the Extended profile at a specified level shall be capable of decoding all bitstreams in which
profile idc isequal to 88 or constraint_set2 flagisequal to 1 and in which level_idc represents alevel less than or equal
to specified level.

Decoders conforming to the Extended profile at a specified level shall also be capable of decoding all bitstreams in
which profile idc is equal to 66 or constraint_setO flag is equal to 1, in which level_idc represents a level less than or
equal to the specified level.

A3 Leves
Thefollowing is specified for expressing the constraints in this Annex.
- Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

- Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

A.3.1 Profile-independent level limits

Let the variable fR be derived as follows.

- If picturenisaframe fRissetequal tol, 172.

- Otherwise (picture nisafield), fRisset equal to 1, (172* 2).

Bitstreams conforming to any profile at a specified level shall obey the following constraints:

a) Thenominal removal time of access unit n (with n > 0) from the CPB as specified in subclause C.1.2, satisfies
the constraint that t,,(n)-t(n-1) is greater than or equa to Max(PicSizelnMbs, MaxMBPS, fR), where
MaxMBPS is the value specified in Table A-1 that applies to picture n, and PicSizelnMbs is the number of
macroblocks in picture n.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2,
setisfies the constraint thet Dt gps(N') >= Max(PicSizeinMbs, MaxMBPS, fR), where MaxMBPS is the value
specified in Table A-1 for picture n, and PicSizelnMbs is the number of macroblocks of picture n, provided that
picture nisapicture that isoutput and is not the last picture of the bitstream that is output.

¢) The sum of the NumBytesInNALunit variables for access unit 0 is less than or equa to
256 * ChromaFormatFactor * (PicSizelnMbs + MaxMBPS* (t(0)-t,(0))) + MinCR, where MaxMBPS
and MinCR are the values specified in Table A-1 that apply to picture 0 and PicSizelnMbs is the number of
macroblocks in picture 0.

d) The sum of the NumBytesInNALunit variables for access unit n (with n > 0) is less than or equal to
256 * ChromaFormatFactor * MaxMBPS* (t(n)-t(n—-1))+ MinCR, where MaxMBPS and MIinCR are
the values specified in Table A-1 that apply to picture n.

DRAFT I TU-T Rec. H.264 (2002 E) 199

e
f)
Q)
h)

PicWidthinMbs * FrameHeightlnMbs <= MaxFS, where MaxFSis specified in Table A-1
PicWidthinMbs <= Sgrt(MaxFS* 8)
FrameHeightinMbs <= Sqrt(MaxFS* 8)

max_dec frame_buffering <= MaxDpbSize, where MaxDpbSize is equal to
Min(1024 * MaxDPB / (PicWidthinMbs * FrameHeightinMbs* 256 * ChromaFormatFactor), 16) and
MaxDPB isgivenin Table A-1 in units of 1024 bytes. max_dec_frame_buffering is also called DPB size.

For the VCL HRD parameters, BitRate] SchedSelldx] <= 1000 * MaxBR and CpbSize] SchedSelldx] <= 1000
* MaxCPB for at least one value of SchedSelldx, where BitRate] SchedSelldx] is given by Equation E-13 and
CpbSize[SchedSelldx] is given by Equation E-14 when vcl_hrd_parameters present flag is equal to 1.
MaxBR and MaxCPB are specified in Table A-1 in units of 1000 bits/s and 1000 bits, respectively. The
bitstream shall satisfy these conditions for at least one value of SchedSelldx in the range O to cpb_cnt_minusl,
inclusive. CpbSize[SchedSelldx] isalso called CPB size.

For the NAL HRD parameters, BitRate[SchedSelldx] <= 1200 * MaxBR and CpbSize][SchedSelldx] <= 1200
* MaxCPB for at least one value of SchedSelldx, where BitRate] SchedSelldx] is given by Equation E-13 and
CpbSize[SchedSelldx] is given by Equation E-14 when nal_hrd_parameters present_flag equal to 1. MaxBR
and MaxCPB are specified in Table A-1 in units of 1200 bits/s and 1200 bits, respectively. The bitstream shall
satisfy these conditions for at least one value of SchedSelldx in the range O to cpb_cnt_minusl.

Vertical motion vector component range does not exceed MaxVmvR in units of luma frame samples, where
MaxVmvR is specified in Table A-1

Horizontal motion vector range does not exceed the range of -2048 to 2047.75, inclusive, in units of luma
samples

Number of motion vectors per two consecutive macroblocks in decoding order (also applying to the total from
the last macroblock of a slice and the first macroblock of the next slice in decoding order) does not exceed
MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1.

Number of bits of macroblock layer() data for any macroblock is not greater than 128 + 2048 *
ChromaFormatFactor. Depending on entropy_coding_mode_flag, the bits of macroblock layer() data are
counted as follows.

- If entropy_coding_mode flag is equal to 0, the number of bits of macroblock_layer() datais given by the
number of bitsin the macroblock layer() syntax structure for a macroblock.

- Otherwise (entropy_coding_mode flag is equal to 1), the number of bits of macroblock layer() data for a
macroblock is given by the number of times read bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3
when parsing the macroblock _layer() associated with the macroblock.

Table A-1 below specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a
corresponding limit.

Conformance to a particular level shall be specified by setting the syntax element level_idc equal to a value of ten times
the level number specified in Table A-1.

200

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table A-1—Level limits

Max Max Max Vertical MV
macr oblock Max decoded video Max component Max number of
processing | frame picture bit rate CPB size range Min motion vectors
rate size buffer size MaxBR MaxCPB MaxVmvR |compression per two
Level | MaxMBPS | MaxFS | MaxDPB | (1000 bits/sor | (1000 bitsor | (lumaframe ratio consecutive MBs
number (MB/s) (MBs) | (1024 bytes) | 1200 bits/s) 1200 hits) samples) MinCR |MaxMvsPer2Mb
1 1485 99 148.5 64 175 [-64,+63.75] 2 -
11 3000 396 3375 192 500 [-128,+127.75] 2 -
1.2 6 000 396 891.0 384 1000 [-128,+127.75] 2 -
13 11880 396 891.0 768 2000 [-128,+127.75] 2 -
2 11 880 396 891.0 2000 2000 [-128,+127.75] 2 -
2.1 19 800 792 17820 4000 4000 [-256,+255.75] 2 -
2.2 20 250 1620 30375 4000 4 000 [-256,+255.75] 2 -
3 40 500 1620 30375 10 000 10 000 [-256,+255.75] 2 32
3.1 108 000 3600 6 750.0 14 000 14 000 [-512,+511.75] 4 16
3.2 216 000 5120 7680.0 20 000 20 000 [-512,+511.75] 4 16
4 245760 8192 12 288.0 20 000 25000 [-512,+511.75] 4 16
4.1 245 760 8192 12 288.0 50 000 62 500 [-512,+511.75] 2 16
4.2 491 520 8192 12 288.0 50 000 62 500 [-512,+511.75] 2 16
5 589 824 22 080 41 310.0 135 000 135 000 [-512,+511.75] 2 16
5.1 983 040 36864 | 69120.0 240 000 240 000 [-512,+511.75] 2 16

Levels with non-integer level numbersin Table A-1 are referred to as “intermediate levels’.
NOTE — All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative subclause A.3.3 shows the effect of these limits on frame rates for several example picture formats.

A.3.2

a)

b)

d)

€)

Profile-specific level limits

In bitstreams conforming to the Main profile, the removal time of access unit O shall satisfy the constraint that
the number of slices in picture 0 is less than or equal to
(PicSizelnMbs + MaxMBPS* (t(0) -t ,(0))) + SliceRate, where SliceRate is the value specified in
Table A-3 that appliesto picture 0.

In bitstreams conforming to the Main profile, the difference between consecutive removal time of access units
nand n- 1 (with n> 0) shall satisfy the constraint that the number of slices in picture nisless than or equal to
MaxMBPS* (t(n)-t(n-1))+ SliceRate, where SliceRate is the value specified in Table A-3 that applies
to picture n.

In bitstreams conforming to the Main profile, sequence parameter sets shall have direct_8x8_inference flag
equal to 1 for the levels specified in Table A-3.

NOTE — direct_8x8 inference_flag is not relevant to the Baseline profile as it does not allow B dlice types (specified in
subclause A.2.1), and direct_8x8 inference flag is equal to 1 for all levels of the Extended profile (specified in subclause
A.2.3).

In bitstreams conforming to the Man and Extended profiles, sequence parameter sets shall have
frame_mbs only_flag equal to 1 for the levels specified in Table A-3 for the Main profile and in Table A-4 for
the Extended profile.

NOTE —frame_mbs _only_flag isequal to 1 for all levels of the Baseline profile (specified in subclause A.2.1).

In bitstreams conforming to the Main and Extended profiles, the value of sub_mb_type in B macroblocks shall
not be equal to B_Bi_8x4, B_Bi_4x8, or B_Bi_4x4 for the levels in which MinLumaBiPredSize is shown as
8x8in Table A-3 for the Main profile and in Table A-4 for the Extended profile.

DRAFT ITU-T Rec. H.264 (2002 E) 201

f) In

bitstreams conforming to the Baseline and Extended profiles, (XInt, e — XInNtyin + 6) * (YINtpa — YINtmn +6)

<= MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8, P_8x8ref0 or B_8x8 for all
invocations of the process specified in subclause 8.4.2.2.1 used to generate the predicted luma sample array for
asingle list (list O or list 1) for each 8x8 sub-macraoblock, where NumSubMbPart(sub_mb_type) > 1, where
MaxSubMbRectSize is specified in Table A-2 for the Baseline profile and in Table A-4 for the Extended profile

an

d
XIntyin as the minimum value of xInt, among all luma sample predictions for the sub-macroblock
XIntya as the maximum value of xInt, among al luma sample predictions for the sub-macroblock
yIntin as the minimum value of yInt, among all luma sample predictions for the sub-macroblock
yInta @ the maximum value of yint, among all luma sample predictions for the sub-macroblock

For each level at which a numerical value of MaxSubMbRectSize is specified in Table A-2 for the Baseline profile and

in Table A-

4 for the Extended profile, the following constraint shall be true for each 8x8 sub-macroblock:

A.3.2.1 Basdineprofilelimits

Table A-2 specifies limits for each level that are specific to bitstreams conforming to the Baseline profile. Entries marked
"-" in Table A-2 denote the absence of a corresponding limit.

A322 M

Table A-2 —Basdline profile level limits

Level number | MaxSubMbRectSize
1 576
11 576
1.2 576
13 576
2 576
2.1 576
2.2 576
3 576
31 -
32 -
4 -
4.1 -
4.2 -
5 -
5.1 -

ain profile limits

Table A-3 specifies limits for each level that are specific to bitstreams conforming to the Main profile. Entries marked
"-" in Table A-3 denote the absence of a corresponding limit.

202

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table A-3—Main profilelevel limits

Level number | SliceRate MinLumaBiPredSize direct_8x8 inference flag frame_mbs only_flag
1 - - - 1
11 - - - 1
12 - - - 1
13 - - - 1
2 - - - 1
21 - - - -
22 - - - -
3 22 - 1 -
31 60 8x8 1 -
3.2 60 8x8 1 -
4 60 8x8 1 -
4.1 24 8x8 1 -
4.2 24 8x8 1 1
5 24 8x8 1 1
51 24 8x8 1 1

A.3.2.3 Extended Profile Limits

Table A-4 specifies limits for each level that are specific to bitstreams conforming to the Extended profile. Entries
marked "-" in Table A-4 denote the absence of a corresponding limit.

Table A-4 — Extended profilelevel limits

Level number | MaxSubMbRectSize | MinLumaBiPredSize | frame mbs only flag
1 576 - 1
11 576 - 1
1.2 576 - 1
13 576 - 1
2 576 - 1
21 576 - -
2.2 576 - -
3 576 - -
31 - 8x8 -
3.2 - 8x8 -
4 - 8x8 -
4.1 - 8x8 -
4.2 - 8x8 1
5 - 8x8 1
51 - 8x8 1

DRAFT I TU-T Rec. H.264 (2002 E) 203

A.33

Effect of level limitson framerate (infor mative)

This subclause does not form an integral part of this Recommendation | International Standard.

Table A-5—-Maximum frame rates (frames per second) for some example frame sizes

L evel number: 1 11 1.2 13 2 2.1 2.2
M ax frame size (macr oblocks): 99 396 396 396 396 792 1620
Max macr oblocks/second: 1485 3000 6 000 11 880 11 880 19 800 20 250
Max frame size (samples): 25344 101 376 101 376 101 376 101 376 202 752 414 720
M ax samples/second: 380 160 768000 1536000 3041280| 3041280 5 068 800 5184 000
Luma| Luma MBs Luma
Format Width | Height Total | Samples
SQCIF 128 96 48 12 288 30.9 62.5 125.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 15.0 30.3 60.6 120.0 120.0 172.0 172.0
QVGA 320 240 300 76 800 - 10.0 20.0 39.6 39.6 66.0 67.5
525 SIF 352 240 330 84 480 - 9.1 18.2 36.0 36.0 60.0 614
CIF 352 288 39| 101376 - 7.6 15.2 30.0 30.0 50.0 511
525 HHR 352 480 660 168 960 - - - - - 30.0 30.7
625 HHR 352 576 792 202 752 - - - - - 25.0 25.6
VGA 640 480 1200 307 200 - - - - - - 16.9
525 4SIF 704 480 1320 337920 - - - - - - 15.3
525 SD 720 480| 1350| 345600 - - - - - - 15.0
ACIF 704 576 1584 405 504 - - - - - - 12.8
625 SD 720 576 1620 414 720 - - - - - - 12.5
SVGA 800 600) 1900| 486400 - - - - - - -
XGA 1024 768 3072 786 432 - - - - - - -
720p HD 1280 720 3600 921 600 - - - - - - -
AGA 1280 960 4800| 1228800 - - - - - - -
SXGA 1280 1024 5120| 1310720 - - - - - - -
525 16SIF 1408 960 5280| 1351680 - - - - - - -
16CIF 1408 1152 6336| 1622016 - - - - - - -
4SVGA 1600 1200 7500 1920000 - - - - - - -
1080 HD 1920 1088 8160| 2088960 - - - - - - -
2Kx1K 2048 1024 8192| 2097152 - - - - - - -
AXGA 2048 1536| 12288| 3145728 - - - - - - -
16VGA 2560 1920| 19200| 4915200 - - - - - - -
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 - - - - - - -
3672x1536 (2.39:1) 3680 1536 22080| 5652480 - - - - - - -
AKx2K 4096 2048 32768| 8388608 - - - - - - -
4096x2304 (16:9) 4096 2304| 36864| 9437184 - - - - - - -
Table A-5 (continued) — Maximum framerates (frames per second) for some example frame sizes
L evel number: 3 3.1 3.2 4 4.1 4.2
Max frame size (macroblocks): 1620 3600 5120 8192 8192 8192
M ax macr oblocks/second: 40500| 108000 216000| 245760 245760 589 824
Max frame size (samples): 414720 921600 1310720 2097 152| 2097 152 2097 152
Max samples/second: 10 368 000 27 648 000 | 55 296 000 | 62 914 560 | 62 914 560| 125 829 120
Luma| Luma MBs Luma
Format Width| Height Total| Samples
SQCIF 128 96 48 12 288 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 300 76 800 135.0 172.0 172.0 172.0 172.0 172.0
525 SIF 352 240 330 84 480 122.7 172.0 172.0 172.0 172.0 172.0
CIF 352 288 396 101 376 102.3 172.0 172.0 172.0 172.0 172.0
525HHR 352 480 660 168 960 61.4 163.6 172.0 172.0 172.0 172.0
625 HHR 352 576 792 202 752 51.1 136.4 172.0 172.0 172.0 172.0
VGA 640 480 1200 307 200 33.8 90.0 172.0 172.0 172.0 172.0
525 4SIF 704 480 1320 337 920 30.7 81.8 163.6 172.0 172.0 172.0
525SD 720 480 1350 345 600 30.0 80.0 160.0 172.0 172.0 172.0
ACIF 704 576 1584 405 504 25.6 68.2 136.4 155.2 155.2 172.0
625 SD 720 576 1620 414720 25.0 66.7 133.3 151.7 151.7 172.0
SVGA 800 600 1900 486 400 - 56.8 113.7 129.3 129.3 172.0
XGA 1024 768 3072 786 432 - 35.2 70.3 80.0 80.0 160.0
720p HD 1280 720| 3600 921600 - 30.0 60.0 68.3 68.3 136.5
AVGA 1280 960 4800| 1228800 - - 45.0 51.2 51.2 102.4
SXGA 1280 1024 5120| 1310720 - - 42.2 48.0 48.0 96.0
525 16SIF 1408 960 5280| 1351680 - - - 46.5 46.5 93.1
16CIF 1408 1152 6336| 1622016 - - - 38.8 38.8 77.6
4SVGA 1600 1200 7500 1920000 - - - 32.8 32.8 65.5
1080 HD 1920 1088 8160| 2088960 - - - 30.1 30.1 60.2
2K X1K 2048 1024| 8192| 2097152 - - - 30.0 30.0 60.0
4XGA 2048 1536 12288| 3145728 - - - - - -
16VGA 2560 1920 19200| 4915200 - - - - - -
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 - - - - - -
3672x1536 (2.39:1) 3680 1536 22080| 5652480 - - - - - -
4K x2K 4096 2048| 32768| 8388608 - - - - - -
4096x2304 (16:9) 4096 2304| 36864| 9437184 - - - - - -

204

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table A-5 (concluded) — Maximum framerates (frames per second) for some example frame sizes

L evel number: 5 5.1
Max frame size (macroblocks): 21 696 36 864
M ax macr oblocks/second: 589 824 983 040
Max frame size (samples): 5554 176 9437184
Max samples/second: 150994 944 | 251 658 240
Luma| Luma MBs Luma

Format Width| Height Total| Samples

SQCIF 128 96 48 12 288 172.0 172.0
QCIF 176 144 99 25344 172.0 172.0
QVGA 320 240 300 76 800 172.0 172.0
525 SIF 352 240 330 84 480 172.0 172.0
CIF 352 288 396 101 376 172.0 172.0
525HHR 352 480 660 168 960 172.0 172.0
625 HHR 352 576 792 202 752 172.0 172.0
VGA 640 480 1200 307 200 172.0 172.0
525 4SIF 704 480 1320 337 920 172.0 172.0
525SD 720 480 1350 345 600 172.0 172.0
ACIF 704 576 1584 405 504 172.0 172.0
625 SD 720 576 1620 414720 172.0 172.0
SVGA 800 600 1900 486 400 172.0 172.0
XGA 1024 768 3072 786 432 172.0 172.0
720p HD 1280 720 3600 921 600 163.8 172.0
AVGA 1280 960 4800| 1228800 122.9 172.0
SXGA 1280 1024 5120| 1310720 115.2 172.0
525 16SI F 1408 960 5280| 1351680 111.7 172.0
16CIF 1408 1152 6336| 1622016 93.1 155.2
4SVGA 1600 1200 7500| 1920000 78.6 131.1
1080 HD 1920 1088 8160| 2088960 72.3 120.5
2Kx1K 2048 1024 8192| 2097 152 72.0 120.0
4XGA 2048 1536| 12288| 3145728 48.0 80.0
16VGA 2560 1920 19200| 4915200 30.7 51.2
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 27.2 45.3
3672x1536 (2.39:1) 3680 1536 22080| 5652480 26.7 44.5
4K x2K 4096 2048| 32768| 8388608 - 30.0
4096x2304 (16:9) 4096 2304| 36864| 9437184 - 26.7

The following should be noted.

This Recommendation | International Standard is a variable-frame-size specification. The specific frame sizes in
Table A-5 areillustrative examples only.

As used in Table A-5, "525" refers to typical use for environments using 525 analogue scan lines (of which
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 anal ogue scan
lines (of which approximately 576 lines contain the visible picture region).

XGA isaso known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF
aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka
625 1TU-R BT.601.

Frame rates given are correct for progressive scan modes. The frame rates are also correct for interlaced video coding
for the cases of frame height divisible by 32.

Annex B

Byte stream format
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of a byte stream format specified for use by application that deliver some or
al of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need
to be identifiable from patterns in the data, such as ITU-T Recommendation H.222.0 | ISO/IEC 13818-1 systems or I TU-
T Recommendation H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start
with the MSB of thefirst byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit
syntax structure contains one start code prefix followed by one nal_unit(NumBytesinNALunit) syntax structure. 1t may
(and under some circumstances, it shall) also contain some additional zero_byte syntax elements.

DRAFT I TU-T Rec. H.264 (2002 E) 205

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Bytestream NAL unit syntax

byte stream_nal_unit(NumBytesInNALunit) { C Descriptor
while(next_bits(24) != 0x000001)
zero_byte /* equal to 0x00 */ f(8)
if(more_data in_byte stream()) {
start_code prefix_one 3bytes /* equal to 0x000001 */ f(24)

nal_unit(NumBytesInNALunit)

B.1.2 Bytestream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the
byte stream NAL units (see subclause 7.4.1.2). The content of each byte stream NAL unit is associated with the same
access unit asthe NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2.3).

zero_byteisasingle byte equal to 0x00.

When any of the following conditions are fulfilled, the minimum required number of zero byte syntax elements
preceding the start_code prefix_one 3bytesis equal to 1.

— thena_unit_type within the nal_unit() is equal to 7 (sequence parameter set) or 8 (picture parameter set)

— the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as
specified by subclause 7.4.1.2.3.

Any number of additional zero_byte syntax elements may immediately precede the start code prefix within the byte
stream NAL unit syntax structure.

start_code_prefix_one 3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a
start code prefix.

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax
structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of
the byte stream.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax
structure in the byte stream:

1. The decoder examines the byte stream, starting at the current position, to detect the location of the next byte-
aligned three-byte sequence equal to 0x000001.

NOTE — This three-byte sequence equa to 0x000001 is a start_code_prefix_one_3bytes syntax element, and all bytes
starting at the current position in the byte stream and preceding the start_code_prefix_one 3bytes (if any) are zero_byte
syntax elements equal to 0x00.

2. All bytes preceding and including this three-byte sequence are discarded and the current position in the byte
stream is set equal to the position of the byte following this three-byte sequence.

3. NumBytesInNALunit is set equal to the number of byte-aligned bytes starting with the byte at the current
position in the byte stream up to and including the last byte that precedes the location of any of the following
conditions:

a. A subsequent byte-aligned three-byte sequence equal to 0x000000, or
b. A subsequent byte-aligned three-byte sequence equal to 0x000001, or

c. Theend of the byte stream, as determined by unspecified means.

206 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is
advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit(NumBytesiInNALunit) and is
decoded using the NAL unit decoding process.

B.3 Decoder byte-alignment recovery (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the
bit-oriented byte alignment detection procedure described in this subclause.

When a decoder does not have byte alignment with the encoder’s byte stream, the decoder may examine the incoming
bitstream for the binary pattern ‘00000000 00000000 00000000 00000001" (31 consecutive bits equal to O followed by a
bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte following a start code prefix.
Upon detecting this pattern, the decoder will be byte aligned with the encoder and positioned at the start of a NAL unitin
the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte
seguences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, thisis a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three byte to be
discarded as specified in subclause 7.4.1.

The byte alignment detection procedure described in this subclause is functionally equivalent to searching a byte
sequence for three consecutive zero-valued bytes (0x000000), starting at any alignment position. Detection of this
pattern indicates that the next non-zero byte contains the end of a start code prefix (as a conforming byte stream cannot
contain more than 23 consecutive zero-valued bits without containing 31 or more consecutive zero-valued bits, allowing
detection of 0x000000 relative to any starting alignment position), and the first non-zero bit in that next non-zero byte is
the last bit of an aligned byte and is the last bit of a start code prefix.

Annex C
Hypothetical reference decoder
(This annex forms an integral part of this Recommendation | International Standard)
This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams are subject to HRD conformance checking for this Recommendation | International Standard.
The first such type of bitstream, called Type | bitstream, is a NAL unit stream containing only the VCL NAL units and
filler data NAL units for all access units in the bitstream. The second type of bitstream, called a Type Il bitstream,
contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of
the following.

— additional non-VCL NAL units other than filler data NAL units

— al start code prefixes and zero_byte syntax elements that form a byte stream from the NAL unit stream
(as specified in Annex B)

Figure C-1 shows the types of bitstream conformance points checked by the HRD.

DRAFT ITU-T Rec. H.264 (2002 E) 207

9&/ L $/ CXQW

1 ROB&/ (1 $/ IXQWRKHU
) BIEDITS/ XQW \KDQITBIEDVT $/ CXQW
Y Y Y
% WRAUHDP [IRWP DW
HOFDSVXOMRQ
NHEQQH v
Y Y Y Y Y \
7\SHJE5' 7\SHJE 5"
7\SHES5" FRQRWP DOFHSRGIKHO FRQRWP DOFHSRGIKHO
FRQRWYP DOFHSRQNV QRANQ) Q)
E\\WAUDP [IRW DW E\\WAUDP (IRW DW

Figure C-1— Structure of byte streamsand NAL unit streamsfor HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the
HRD, are specified in the semantic subclauses of clause 7 and Annexes D and E.

Two types of HRD parameter sets are used. The HRD parameter sets are signalled through video usability information
as specified in subclauses E.1 and E.2, which is part of the sequence parameters set syntax structure.

In order to check conformance of a bitstream using the HRD, all sequence parameter sets and picture parameters sets
referred to in the VCL NAL units, and corresponding buffering period and picture timing SEI messages shall be
conveyed to the HRD, in a timely manner, either in the bitstream (by non-VCL NAL units), or by other means not
specified in this Recommendation | International Standard.

In Annexes C, D and E, the specification for "presence" of non-VCL NAL unitsis also satisfied when those NAL units
(or just some of them) are conveyed to decoders (or to the HRD) by other means not specified by this
Recommendation | International Standard. For the purpose of counting bits, only the appropriate bits that are actually
present in the bitstream are counted.
NOTE - As an example, synchronization of a non-VCL NAL unit, conveyed by means other than presence in the bitstream, with
the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the non-
VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.

When the content of anon-VCL NAL unit is conveyed for the application by some means other than presence within the
bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax specified in
this annex.
NOTE - When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the
regquirements of this subclause based solely on information contained in the bitstream. When the HRD information is not present
in the bitstream, as is the case for all "stand-alone" Type | bitstreams, conformance can only be verified when the HRD data is
supplied by some other means not specified in this Recommendation | International Standard.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB),
and output cropping as shown in Figure C-2.

208 DRAFT ITU-T Rec. H.264 (2002 E)

Reference
fields or frames

DRAFT ISO/IEC 14496-10

Hypothetical
stream scheduler
(HSS)

| Type | or type Il bitstream

Coded picture
buffer (CPB)

| Access

units

Decoding process
(instantaneous)

Fields o

r frames

Decoded picture
buffer (DPB)

Fields or frames

Qutput cropping

| Output cropped fields or frames

DRAFT ITU-T Rec. H.264 (2002 E)

: 2002 (E)

209

- Let picture n be the primary coded picture or the decoded primary picture of access unit n.

C.1 Operation of coded picture buffer (CPB)

The specifications in this subclause apply independently to each set of CPB parameters that is present and to both Type |
and Type Il conformance.

C.1.1 Timing of bitstream arrival

The HRD may beinitialised at any one of the buffering period SEI messages. Prior to initialisation, the CPB is empty.
NOTE - After initialisation, the HRD is not initialised again by subsequent buffering period SEI messages.

The access unit that is associated with the buffering period SEI message that initializes the CPB is referred to as access
unit 0. All other access units are referred to as access unit n with n being incremented by 1 for the next access unit in
decoding order.

The time at which the first bit of access unit n beginsto enter the CPB is referred to as the initial arrival timet;(n).
The initia arrival time of access unitsis derived as follows.
- If theaccessunitisaccess unit 0, t5(0) =0,
- Otherwise (the access unit is access unit n with n > 0), the following applies.
- If cbr_flag[SchedSelldx] isequa to 1, the initial arrival time for access unit n, is equal to the final arrival time
(which is derived below) of accessunitn- 1, i.e.

ta(n) =ts(n-1) (C-2)

- Otherwise, if cbr_flag[SchedSelldx] is equal to 0 and access unit n is not the first access unit of a subsequent
buffering period, the initial arrival time for access unit n is derived by

ti(n) =MaxX(te(N—1), ta eaies(N)) (C-3
where ty eaiies(N) IS given as follows

taj,earlieﬁ(n) = tr,n(n) -
(initial_cpb_removal_delay[SchedSelldx] + initial_cpb_removal_delay offset[SchedSelldx]) , 90000 (C-4)

with t, o(n) being the nomina removal time of access unit n from the CPB as specified in subclause C.1.2 and
initial_cpb _remova_delay[SchedSelldx] and initia_cpb_removal_delay offset[SchedSelldx | being specified
in the previous buffering period SEI message.

- Otherwise (cbr_flag[SchedSelldx] is equal to O and the subsequent access unit n is the first access unit of a
subsequent buffering period), the initial arrival time for the access unit n is derived by

ti(n) =t (n)—(initial_cpb_removal_delay[SchedSelldx], 90000) (C-5)
with initial_cpb_removal_delay[SchedSelldx] being specified in the buffering period SEI message associated
with access unit n.

Thefinal arrival time for access unit nis derived by
tg(n) =ti(n) +b(n), BitRate] SchedSelldx] (C-6)

where b(n) is the size in bits of access unit n, counting the bits of the Type | bitstream for Type | conformance or the
bits of the Type Il bitstream for Type Il conformance.

The values of SchedSelldx, BitRate] SchedSelldx], and CpbSize] SchedSelldx | are constrained as follows.

- If access unit n and access unit n- 1 are part of different coded video sequences and the content of the active
sequence parameter sets of the two coded video sequences differ, the HSS may select a value SchedSelldx1 of
SchedSelldx from among the values of SchedSelldx provided for the coded video sequence containing access unit n
that results in a BitRate] SchedSelldx1] or CpbSize[SchedSelldx1] for the second of the two coded video
sequences (which contains access unit n — 1) that differs from the value of BitRate] SchedSelldx0] or
CpbSize[SchedSelldx0] for the value SchedSelldx0 of SchedSelldx that was in use for the coded video sequence
containing access unit n - 1.

210 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- Otherwise, the HSS continues to operate with the previous values of SchedSelldx, BitRate[SchedSelldx] and
CpbSize[SchedSelldx].

When the HSS selects values of BitRate] SchedSelldx | or CpbSize[SchedSelldx] that differ from those of the previous
access unit, the following applies.

- thevariable BitRate] SchedSelldx] comesinto effect at timetz(n)

- thevariable CpbSize] SchedSelldx] comesinto effect as follows.
- If the new value of CpbSize[SchedSelldx | exceeds the old CPB size, it comesinto effect at timet(n),
- Otherwise, the new value of CpbSize] SchedSelldx] comesinto effect at thetimet,(n).

C.1.2 Timing of coded picture removal

For access unit 0, the nominal removal time of the access unit from the CPB is specified by
t,n(0) = initial_cpb_removal_delay[SchedSelldx], 90000 (C-7)

For the first access unit of a buffering period that does not initialise the HRD, the nomina removal time of the access
unit from the CPB is specified by

trn(N)=tn(ny) +t.* cpb_removal_delay(n) (C-8)
where t.,(n,) is the nominal remova time of the first picture of the previous buffering period and
cpb_remova_delay(n) is specified in the picture timing SEI message associated with access unit n.

When an access unit n is the first access unit of a buffering period, ny is set equal to n at the removal time of access
unit n.

The nominal removal timet; ,(n) of an access unit n that is not the first access unit of a buffering period is given by
tra(N) =tn(Ny) +t.* cpb_removal_delay(n) (C-9

The removal time of access unit n is specified as follows.

- If low_delay_hrd_flagisequal to O or t.,(n) >=t4(n), theremoval time of access unit n is specified by
t(n)=tn(n) (C-10)

- Otherwise (low_delay_hrd_flagisequal to 1 and t,,(n) <tx(n)), the removal time of access unit n is specified by
t(n)=tn(n) +t* Ceil((ts(n) -tn(n)), tc) (C-11)

NOTE — The latter case indicates that the size access unit n, b(n), is so large that it prevents removal at the nominal removal time.

C.2 Operation of the decoded picture buffer (DPB)

The decoded picture buffer contains frame buffers. Each of the frame buffers may contain a decoded frame, a decoded
complementary field pair or a single (non-paired) decoded field that are marked as "used for reference" (reference
pictures) or are held for future output (reordered or delayed pictures). Prior to initialisation, the DPB is empty (the DPB
fullnessis set to zero). The following steps of the subclauses of this subclause all happen instantaneously at t,(n) and in
the sequence listed.

C.21 Decoding of gapsin frame_num and storage of " non-existing" frames

If applicable, gaps in frame_num are detected by the decoding process and the generated frames are marked and inserted
into the DPB as specified below.

Gaps in frame_num are detected by the decoding process and the generated frames are marked as specified in subclause
8.25.2.

After the marking of each generated frame, each picture m marked by the “sliding window” process as “unused for
reference” isremoved from the DPB when it is also marked as "non-existing" or its DPB output time is less than or equal
to the CPB removal time of the current picture n; i.e., toge(M) <=t(n). When aframe or the last field in aframe buffer
is removed from the DPB, the DPB fullness is decremented by one. The “non-existing” generated frame is inserted into
the DPB and the DPB fullness is incremented by one.

DRAFT ITU-T Rec. H.264 (2002 E) 211

C.2.2 Picturedecoding and output
Picture n is decoded and its DPB output time t, gp0(N) is derived by

toapp(N) =t(Nn) + t.* dpb_output_delay(n) (C-12)

The output of the current pictureis specified as follows.

- If to () = t(n), the current picture is output.
NOTE - When the current picture is areference picture it will be stored in the DPB

- Otherwise (togm(n) > t(n)), the current picture is output later and will be stored in the DPB (as specified in
subclause C.2.4) and is output at time t,qo(N) unless indicated not to be output by the decoding or inference of
no_output_of_prior_pics flag equal to 1 at atime that precedes t, gpu(N).

The output picture shall be cropped, using the cropping rectangle specified in the sequence parameter set for the
sequence.

When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of Dtgggn(N)
is defined as:

Dto,dpb(n) = to,dpb(Ny) - to,dpb(n) (C‘13)

where n, indicates the picture that follows after picture nin output order.

The decoded picture is temporarily stored (not in the DPB).

C.2.3 Removal of picturesfrom the DPB before possible insertion of the current picture
The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows.

- If the decoded pictureisan IDR picture the following applies.

- All reference pictures in the DPB are marked as "unused for reference” as specified in subclauses 8.2.5.3 and
8.2.54.

- Whenthe IDR picture is not the first IDR picture decoded and the value of PicWidthinMbs or FrameHeightinMbs
or max_dec frame buffering derived from the active sequence parameter set is different from the vaue of
PicWidthinMbs or FrameHeightinMbs or max_dec_frame_buffering derived from the sequence parameter set that
was active for the preceding sequence, respectively, no_output_of_prior_pics flag isinferred to be equal to 1 by
the HRD, regardless of the actual value of no_output_of prior_pics flag.

NOTE - Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in regard
to changes in PicWidthinMbs or FrameHeightInMbs.

- When no_output_of_prior_pics flag is egual to 1 or isinferred to be equal to 1, all frame buffersin the DPB are
emptied without output of the pictures they contain, and DPB fullnessis set to 0.

- Otherwise (the decoded pictureis not an IDR picture), the following applies.

- If the dlice header of the current picture includes memory management_control_operation equal to 5, all
reference picturesin the DPB are marked as "unused for reference”.

- Otherwise (the slice header of the current picture does not include memory_management_control_operation equal
to 5), the decoded reference picture marking process is invoked.

All pictures min the DPB, for which all of the following conditions are true, are removed from the DPB.

- picture m is marked as “unused for reference” or picture m is a non-reference picture. When a picture is a reference
frame, it is considered to be marked as "unused for reference” only when both of its fields have been marked as
"unused for reference”.

- picture m is marked as "non-existing" or its DPB output time is less than or equal to the CPB removal time of the
current picture n; i.e., togon(M) <=t(n)

When aframe or the last field in aframe buffer is removed from the DPB, the DPB fullness is decremented by one.
C.24 Current decoded picture marking and storage

C.2.4.1 Marking and storage of a reference decoded pictureinto the DPB

When the current picture is areference pictureit is stored in the DPB as follows.

212 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- |If the current decoded picture is a second field (in decoding order) of a complementary reference field pair, and the
first field of the pair is till in the DPB, the current decoded picture is stored in the same frame buffer as the first
field of the pair.

- Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

C.2.4.2 Storage of a non-reference pictureinto the DPB

When the current picture is a non-reference picture and current picture n has t, gop(n) > t(n), it is stored in the DPB as
follows.

- If the current decoded picture is a second field (in decoding order) of a complementary non-reference field pair, and
the first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as the first
field of the pair.

- Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

C.3 Bitstream confor mance

A bitstream of coded data conforming to this Recommendation | International Standard fulfils the following
requirements.

The bitstream is constructed according to the syntax, semantics, and constraints specified in this
Recommendation | International Standard outside of this Annex.

The bitstream is tested by the HRD as specified below:

For Type | bitstreams, the number of tests carried out is equa to cpb _cnt_ minusl + 1 where cpb_cnt_minusl is the
syntax element of hrd_parameters() following the vcl_hrd_parameters present_flag or cpb_cnt_minusl for Type |
conformance is determined by the application by other means not specified in this Recommendation | International
Standard. Onetest is carried out for each bit rate and CPB size combination specified by hrd_parameters() following the
vcl_hrd parameters present flag.

For Type Il bitstreams there are two sets of tests. The number of tests of the first set is equal to cpb_cnt_minusl + 1
where cpb_cnt_minusl is the syntax element of hrd_parameters() following the vcl_hrd_parameters present flag or
cpb_cnt_minusl for Type Il conformance is determined by the application by other means not specified in this
Recommendation | International Standard.. One test is carried out for each bit rate and CPB size combination. For these
tests, only VCL and filler data NAL units are counted for the input bit rate and CPB storage.

The number of tests of the second set, for Type Il bitstreams, is equal to cpb_cnt_minusl + 1 where cpb_cnt_minusl is
the syntax element of hrd_parameters() following the nal_hrd parameters present flag or cpb_cnt_minusl for Type Il
conformance is determined by the application by other means not specified in this Recommendation | International
Standard. Onetest is carried out for each bit rate and CPB size combination specified by hrd_parameters() following the
nal_hrd parameters present flag. For these tests, all NAL units (of a Type Il NAL unit stream) or al bytes (of a byte
stream) are counted for the input bit rate and CPB storage.

For conformant bitstreams, al of the following conditions shall be fulfilled for each of the tests.

- Initial arrival time consistency: For each access unit n, with n>0, associated with a buffering period SEI message,
with Dtgg(N') Specified by

Dtgoo(n) =90000* (tn(Nn)-tz(n-1)) (C-149)

Thevalue of initia_cpb_removal_delay[SchedSelldx] shall be constrained as follows.
- If cbr_flag[SchedSelldx] isequal to 0,

initial_cpb_removal_delay[SchedSelldx] <= Dtggo(n) (C-15)
- Otherwise (cbr_flag[SchedSelldx] isequa to 1),
Floor(Dtgeo(n)) <= initial_cpb_removal_delay[SchedSelldx] <Dtggo(n) + 1 (C-16)

NOTE — When cbr_flag[SchedSelldx] is equal to1l and the precision of the clocks used (the 90 kHz clock used for
initial_cpb_removal_delay[SchedSelldx], and the 1, t. Hz clock used for cpb_removal_delay) differs, the constraint above may
cause a small difference of CPB buffer fullness in the operation of the HRD &fter initialisation at different buffering period SEI
messages. Encoders must take this into account, as the HRD may be initialised at any one of the buffering period SEI messages.

DRAFT ITU-T Rec. H.264 (2002 E) 213

- CPB underflow and overflow prevention: The CPB shall never overflow or underflow.

NOTE - In terms of the arrival and removal schedules, this means that, with the exception of some access units in low-delay
mode that are described below, all bits from an access unit must be in the CPB at the access unit's nominal removal time
tn(n). In other words, its final arrival time must be no later than its nominal removal time: tx(n) <= t,(n). Further, the
nominal removal time t,(n) must be no later than the time-equivalent of the buffer size CpbSize[SchedSelldx] ,
BitRate[SchedSelldx]. This prevents both underflow and overflow.

- CPB overflow prevention for big picture removal time: When the final arrival time t4(n) of access unit n to the CPB
exceeds its nominal removal timet; ,(n), its size must be such that it can be removed from the buffer without overflow
at t(n) as specified above.

NOTE — The final arrival time tg(n) of access unit n to the CPB can only exceed its nominal removal time t,,(n) when
low_delay_hrd flagisequal to 1.

- Maximum removal rate from the CPB: The nominal removal times of pictures from the CPB (starting from the
second picture in decoding order), shall satisfy the constraints on t, ,(n) and t.(n) expressed in subclauses A.3.1 and
A.3.2 for the profile and level specified in the bitstream.

- DPB overflow prevention: Immediately after any decoded picture is added to the DPB, the fullness of the DPB shall
be less than or equal to the DPB size as constrained by Annexes A, D, and E for the profile and level specified in the
bitstream.

- DPB underflow prevention: All reference pictures shall be present in the DPB when needed for prediction. Each
picture shall be present in the DPB at its DPB output time unlessiit is not stored in the DPB at al, or is removed from
the DPB before its output time by one of the processes specified in subclause C.2.

- Maximum output rate from the DPB: The value of Dt,g(n) as given by Equation C-13, which is the difference
between the output time of a picture and that of the picture immediately following it in output order, shall satisfy the
constraint expressed in subclause A.3.1 for the profile and level specified in the bitstream.

C.4 Decoder conformance
A decoder conforming to this Recommendation | International Standard fulfils the following requirements.

A decoder claiming conformance to a specific profile and level shall be able decode successfully al conforming
bitstreams specified for decoder conformance in subclause C.3, provided that all sequence parameter sets and picture
parameters sets referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages are
conveyed to the decoder, in atimely manner, either in the bitstream (by non-VCL NAL units), or by external means not
specified by this Recommendation | International Standard.

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order
conformance.

To check conformance of a decoder, test bitstreams conforming to the claimed profile and level, as specified by
subclause C.3 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test
(DUT). All pictures output by the HRD shall also be output by the DUT and, for each picture output by the HRD, the
values of all samples that are output by the DUT for the corresponding picture shall be equal to the values of the samples
output by the HRD.

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only
from the subset of values of SchedSelldx for which the bit rate and CPB size are restricted as specified in Annex A, for
the specified profile and level, or with "interpolated” delivery schedules for which the bit rate and CPB size are restricted
as specified in Annex A derived from the bit rate and CPB sizes expressed for the provided values of SchedSelldx as
specified below. The same delivery schedule is used for both the HRD and DUT.

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minusl greater than 0, the
decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an "interpolated” delivery
schedule specified as having peak bit rater, CPB sizec(r), and initial CPB removal delay (f(r), r) asfollows
a =(r - BitRate] SchedSelldx - 1]), (BitRate] SchedSelldx] — BitRate] SchedSelldx - 1]), (C-17)
c(r)=a* CpbSize[SchedSelldx] + (1 —a) * CpbSize] SchedSelldx-1], (C-18)

f(r)=a * initia_cpb_removal_delay[SchedSelldx] * BitRate] SchedSelldx | +
(1-—a)*initia_cpb remova_delay[SchedSelldx - 1] * BitRate[SchedSelldx - 1] (C-19)

for any SchedSelldx > 0 and r such that BitRate] SchedSelldx - 1] <=r <= BitRate[SchedSelldx] such that r and c(r)
are within the limits as specified in Annex A for the maximum bit rate and buffer size for the specified profile and level.

214 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

NOTE - initial_cpb_removal_delay[SchedSelldx] can be different from one buffering period to another and have to be re-
calculated.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time
of thefirst bit) of picture output is the same for both HRD and the DUT up to afixed delay.

For output order decoder conformance, the HSS delivers the bitstream to the DUT "by demand” from the DUT, meaning
that the HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing. An
HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules specified in the
bitstream or by an "interpolated” schedule such that the bit rate and CPB size are restricted as specified in Annex A. The
order of pictures output shall be the same for both HRD and the DUT.

NOTE - This means that for thistest, the coded picture buffer of the DUT could be as small as the size of the largest access unit.

For the HRD, the CPB size is equal to CpbSize[SchedSelldx] for the selected schedule and the DPB size is equa to
MaxDpbSize. Removal time from the CPB for the HRD is equal to fina bit arrival time and decoding is immediate. The
operation of the DPB of thisHRD is described below.

C.4.1 Operation of the output order DPB

The decoded picture buffer contains frame buffers. Each of the frame buffers may contain a decoded frame, a decoded
complementary field pair or a single (non-paired) decoded field that is marked as "used for reference” or is held for
future output (reordered pictures). At HRD initialization, the DPB fullness, measured in frames, is set to 0. The
following steps all happen instantaneously when an access unit is removed from the CPB, and in the order listed.

C.4.2 Decoding of gapsin frame_num and storage of " non-existing" pictures

If applicable, gaps in frame_num are detected by the decoding process and the generated frames are marked and inserted
into the DPB as specified below.

Gaps in frame_num are detected by the decoding process and the generated frames are marked as specified in subclause
8.2.5.2.

When there are not enough empty frame buffers (i.e., DPB size minus DPB fullness is less than the number of "non-
existing" frames to be stored), the necessary number of frame buffers is emptied by the "bumping" process specified
below.

All generated frames marked as “non-existing” and “used for short-term reference” are inserted into the DPB. The DPB
fullness is incremented according to the number of additional frames stored in the DPB as a result of the insertion of the
"non-existing" frames.

C.4.3 Picturedecoding
Primary coded picture n is decoded and is temporarily stored (not in the DPB).

C.44 Removal of picturesfrom the DPB befor e possible insertion of the current picture
The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows .

- If the decoded pictureis an IDR picture the following applies.
- All reference picturesin the DPB are marked as "unused for reference” as specified in subclause 8.2.5.

- When the IDR picture is not the first IDR picture decoded and the value of PicWidthinMbs or FrameHeightinMbs
or max_dec frame buffering derived from the active sequence parameter set is different from the value of
PicWidthinMbs or FrameHeightinMbs or max_dec frame_buffering derived from the sequence parameter set that
was active for the preceding sequence, respectively, no_output_of prior_pics flag isinferred to be equal to 1 by
the HRD, regardless of the actual value of no_output_of_prior_pics flag.

NOTE - Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in regard
to changesin PicwWidthinMbs or FrameHeightinMbs.

- When no_output_of_prior_pics flag is equal to 1 or isinferred to be equal to 1, all frame buffersin the DPB are
emptied without output of the pictures they contain, and DPB fullnessis set to 0.
- Otherwise (the decoded pictureis not an IDR picture), the following applies.

- If the slice header of the current picture includes memory management_control _operation equal to 5, all
reference picturesin the DPB are marked as "unused for reference" as specified in subclause 8.2.5.

- Otherwise (the slice header of the current picture does not include memory _management_control _operation equal
to 5), the decoded reference picture marking process is invoked as specified in subclause 8.2.5. Frame buffers
containing frames marked as "non-existing" and "unused for reference” are emptied without output of the "non-
existing" frames they contain, and the DPB fullness is decremented by the number of frame buffers emptied.

DRAFT ITU-T Rec. H.264 (2002 E) 215

When the current picture is an IDR picture and no_output_of prior_pics flag is not equal to 1 and is not inferred to be
equal to 1, or the current picture has memory_management_control_operation egqual to 5, al non-empty frame buffersin
the DPB are emptied by repeatedly invoking the “bumping” process specified below, and the DPB fullnessis set to 0.

C.45 Current decoded picture marking and storage

C.45.1 Storage and marking of areference decoded pictureinto the DPB
When the current picture is areference picture, it is stored in the DPB as follows.

- If the current decoded picture is the second field (in decoding order) of a complementary reference field pair,
and the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first
field of the pair.

- Otherwise, the following operations are performed:

— When there is no empty frame buffer (i.e.,, DPB fullness is equal to DPB size), one is emptied by the
"bumping" process specified below.

— The current decoded picture is stored in an empty frame buffer and the DPB fullness is incremented by
one.

C.4.5.2 Storage and marking of a non-reference decoded pictureinto the DPB

When the current picture is a non-reference picture, it is stored in the DPB as follows.

— If the current decoded picture is the second field (in decoding order) of a complementary non-reference field pair
and the first field of the pair is till in the DPB, the current picture is stored in the same frame buffer as the first field
of the pair.

— Otherwise, the following operations are performed:
— When thereis no empty frame buffer (i.e., DPB fullnessis equal to DPB size), the following applies

— If the current picture does not have the lowest value of PicOrderCnt() among all picturesin the DPB,
aframe buffer is emptied by the "bumping" process described below.

— Otherwise (the current picture has the lowest value of PicOrderCnt() among al picturesin the DPB),
the current picture is cropped, using the cropping rectangle specified in the sequence parameter set
for the sequence and the cropped picture is output

— When the current decoded picture has not been output, it is stored in an empty frame buffer and the DPB
fullness isincremented by one.

C.4.5.3 "Bumping" process

The "bumping” process operates when an empty frame buffer is needed for a decoded (non IDR) picture, as in the
following steps:

1. When a frame buffer of the DPB contains a complementary non-reference field pair with both fields marked as
"needed for output" and both fields have the same PicOrderCnt(), the first of the two fields in decoding order is
considered first for “bumping”. When a frame buffer of the DPB contains a complementary reference field pair with
both fields marked as "needed for output” and both fields have the same PicOrderCnt(), the two fields are considered
together for “bumping” as specified below.

The picture marked as "needed for output" that has the lowest value of PicOrderCnt() of all pictures in the DPB
marked as "needed for output”, is cropped, using the cropping rectangle specified in the sequence parameter set for
the sequence, the cropped picture is output, and the picture is marked as "not needed for output”. When this pictureis
afield which is part of a complementary reference field pair, and the other field of the pair is till in the DPB and
marked as "needed for output”, and the values of PicOrderCnt() of both fields are the same, the other field is
cropped, using the cropping rectangle specified in the sequence parameter set for the sequence, and the cropped field
is output together with the previous one, and the field is marked as "not needed for output".

2. The frame buffer that included the field, complementary reference field pair, or frame output in step 1 is checked,
and the following applies.

- If one of the following conditions is satisfied, the frame buffer is emptied, DPB fullness is decremented and the
bumping operation is terminated.

- Theframe buffer includes a non-reference non-paired field

- Theframe buffer includes a non-reference frame with both fields marked as "not needed for output"

216 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- The frame buffer includes a complementary non-reference field pair with both fields marked as "not needed
for output".

- The frame buffer includes a non-paired reference field marked as "unused for reference" and "not needed for
output”.

- The frame buffer includes a reference frame with both fields marked as "unused for reference’ and "not
needed for output".

- The frame buffer includes a complementary reference field pair with both fields marked as "unused for
reference” and "not needed for output”.

- Otherwise, steps 1 and 2 are repeated until termination.

Annex D

Supplemental enhancement infor mation
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics for SEI message payloads.

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not required
for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process
this information for output order conformance to this Recommendation | International Standard (see Annex C for the
specification of conformance). Some SEI message information is required to check bitstream conformance and for output
timing decoder conformance.

In Annex D, specification for presence of SEI messages are also satisfied when those messages (or some subset of them)
are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International Standard.
When present in the bitstream, SEI messages shall obey the syntax and semantics specified in subclauses 7.3.2.3 and
7.4.2.3 and this annex. When the content of an SEI message is conveyed for the application by some means other than
presence within the bitstream, the representation of the content of the SEI message is not required to use the same syntax
specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the
bitstream are counted.

DRAFT ITU-T Rec. H.264 (2002 E) 217

D.1 SEl payload syntax

sei_payload(payloadType, payloadSize) {

Descriptor

if(payloadType==0)

buffering_period(payloadSize)

elseif(payloadType==1)

pic_timing(payloadSize)

elseif(payloadType==2)

pan_scan_rect(payloadSize)

eseif(payloadType==3)

filler_payload(payloadSize)

elseif(payloadType==4)

user_data registered itu_t_t35(payloadSize)

eseif(payloadType==5)

user_data_unregistered(payloadSize)

eseif(payloadType==6)

recovery point(payloadSize)

elseif(payloadType==7)

dec_ref_pic_marking_repetition(payloadSize)

elseif(payloadType==8)

spare_pic(payloadSize)

elseif(payloadType==9)

scene_info(payloadSize)

elseif(payloadType==10)

sub_seq_info(payloadSize)

elseif(payloadType==11)

sub_seq layer characteristics(payloadSize)

elseif(payloadType==12)

sub_seq_characteristics(payloadSize)

elseif(payloadType==13)

full_frame_freeze(payloadSize)

elseif(payloadType==14)

full_frame freeze release(payloadSize)

elseif(payloadType==15)

full_frame_snapshot(payloadSize)

eseif(payloadType==16)

progressive_refinement_segment_start(payloadSize)

elseif(payloadType==17)

progressive_refinement_segment_end(payloadSize)

elseif(payloadType==18)

motion_constrained slice group set(payloadSize)

else

reserved sei__message(payloadSize)

if('byte_aligned()) {

bit_equal to one /* equal to 1 */

f(2)

while('byte_aligned())

bit_equal to zero /* equa to0*/

f(1)

218 DRAFT ITU-T Rec. H.264 (2002 E)

D.11

D.1.2

DRAFT ISO/IEC 14496-10 : 2002 (E)
Buffering period SEI message syntax
buffering_period(payloadSize) { C | Descriptor
seq_parameter_set_id 5 | ug(v)
if(NalHrdBpPresentFlag) {
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minusl; SchedSelldx++) {
initial_cpb_removal_delay[SchedSelldx] 5 [uv)
initial_cpb_removal_delay offset[SchedSelldx] 5 [uv)
}
}
if(VclHrdBpPresentFlag) {
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minusl; SchedSelldx++) {
initial_cpb_removal_delay[SchedSelldx] 5 | uv)
initial_cpb_removal_delay offset[SchedSelldx] 5 [uv)
}
}
}
Picturetiming SEI message syntax
pic_timing(payloadSize) { C | Descriptor
if(CpbDpbDelaysPresentFlag) {
cpb_removal_delay 5 [uv)
dpb_output_delay 5 [uv)
}
if(pic_struct_present flag) {
pic_struct 5 | u@
for(i =0; i < NumClockTS; i++) {
clock_timestamp_flag[i] 5 | u(1)
if(clock_timestamp_flag[i]) {
ct_type 5 [u@
nuit_field_based flag 5 | u(l)
counting_type 5 [u®)
full_timestamp_flag 5 | u(l)
discontinuity_flag 5 [u®@
cnt_dropped_flag 5 [u®@
n_frames 5 | u(8)
if(full_timestamp_flag) {
seconds value/* 0..59 */ 5 | u(6)
minutes value /* 0..59 */ 5 | u6)
hours value/* 0..23 */ 5 | u(b)
} else{
seconds flag 5 | u(l)
if(seconds flag) {
DRAFT ITU-T Rec. H.264 (2002 E) 219

seconds value /* range 0..59 */ 5 [u6)
minutes flag 5 | u@)
if(minutes flag) {
minutes value /* 0..59 */ 5 [u6)
hours flag 5 | u@)
if(hours flag)
hours value/* 0..23 */ 5 | u(b)
}
}
}
if(time_offset length>0)
time_offset 5 [i(v)
}
}
}
}

D.1.3 Pan-scan rectangle SElI message syntax

pan_scan_rect(payloadSize) { C | Descriptor
pan_scan_rect_id 5 | ugv)
pan_scan_rect_cancel_flag 5 [u®@
if(!pan_scan_rect_cancel flag) {
pan_scan_cnt_minusl 5 | ugv)

for(i=0;i<=pan_scan _cnt_ minusl; i++) {

pan_scan_rect_left_offset[i] 5 | se(v)
pan_scan_rect_right_offset[i] 5 | sg(v)
pan_scan_rect_top_offset[i] 5 | se(v)
pan_scan_rect_bottom_offset[i] 5 | se(v)
}
pan_scan_rect_repetition_period 5 | ugv)
}
}
D.1.4 Filler payload SEI message syntax
filler_payload(payloadSize) { C | Descriptor
for(k = 0; k < payloadSize; k++)
ff_byte /* equal to OXFF */ 5 [f(8)
}

220 DRAFT ITU-T Rec. H.264 (2002 E)

D.1.5

D.1.6

D.1.7

D.1.8

DRAFT ISO/IEC 14496-10 : 2002 (E)

User dataregistered by I TU-T Recommendation T.35 SEI message syntax
user_data registered itu t t35(payloadSize) { C | Descriptor
itu_t t35 country_code 5 b(8)
if(itu_t t35 country code != OxFF)
i=1
ese{
itu_t t35 country_code extension_byte 5 b(8)
i=2
}
do{
itu_t_t35 payload byte 5 | b(8)
i++
} while(i < payloadSize)
}
User data unregistered SEI message syntax
user_data_unregistered(payloadSize) { C | Descriptor
uuid_iso_iec_11578 5 | u(128)
for(i=16; i < payloadSize; i++)
user_data payload_byte 5 b(8)
}
Recovery point SEI message syntax
recovery point(payloadSize) { C | Descriptor
recovery frame cnt 5 | ugv)
exact_match_flag 5 | u®@
broken_link_flag 5 | u®@
changing_slice group_idc 5 [u@
}
Decoded reference picture marking repetition SEI message syntax
dec_ref_pic_marking_repetition(payloadSize) { C | Descriptor
original_idr_flag 5 | u®@
original_frame num 5 | ugv)
if(Iframe_mbs _only flag) {
original_field_pic flag 5 | u®@
if(original_field_pic_flag)
original_bottom_field_flag 5 1 ud)
}
dec_ref pic_marking() 5

DRAFT ITU-T Rec. H.264 (2002 E)

221

D.19 Sparepicture SEl message syntax

spare_pic(payloadSize) { C | Descriptor

target_frame num 5 | ugv)
spare field flag 5] u(d)
if(spare field_flag)

target_bottom_field flag 5] u(d)
num_spare_pics_minusl 5 [ue(v)
for(i=0; i <num_spare pics minusl + 1; i++) {

delta_spare frame num|[i|] 5 | ug(v)

if(spare_field_flag)

spare bottom_field flag[i] 5] u(d)
spare area idc[i] 5 | ug(v)

if(spare area idc[i] == 1)

for(j = 0; j <PicSizelnMapUnits; j++)

spare unit_flag[i][]j] 5] u(d)

elseif(spare area idc[i] == 2){

mapUnitCnt = 0

for(j=0; mapUnitCnt < PicSizelnMapUnits; j++) {

zero _run_length[i][]] 5 | ugVv)

mapUnitCnt += zero_run_length[i][j] + 1

D.1.10 Sceneinformation SEI message syntax

scene_info(payloadSize) { C | Descriptor
scene_info_present_flag 5 [u@
if(scene_info_present_flag) {
scene_id 5 | ugv)
scene_transition_type 5 | ugv)

if(scene_transition_type > 3)

second_scene id 5 | ugv)

222 DRAFT ITU-T Rec. H.264 (2002 E)

D.1.11 Sub-sequenceinformation SEI message syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

sub_seq_info(payloadSize) { C | Descriptor
sub_seq_layer_num 5 | ugv)
sub_seq_id 5 | ugv)
first_ref_pic_flag 5 | u®@
leading_non_ref pic flag 5 | u®@
last_pic_flag 5 | u®@
sub_seq_frame num_flag 5 | u®@
if(sub_seq frame num flag)
sub_seq_frame num 5 | ugv)
}
D.1.12 Sub-sequence layer characteristics SEI message syntax
sub_seq_layer characteristics(payloadSize) { C | Descriptor
num_sub_seq_layers minusl 5 | ugv)
for(layer = 0; layer <= num_sub_seq layers minusl; layer++) {
accurate statistics flag 5 [u®@
average bit_rate 5 | u(16)
average frame rate 5 | u(16)
}
}
D.1.13 Sub-sequence characteristics SEI message syntax
sub_seq_characteristics(payloadSize) { C | Descriptor
sub_seq_layer_num 5 | ugv)
sub_seq_id 5 | ugv)
duration_flag 5 |u(l)
if(duration_flag)
sub_seq_duration 5 [u32
average rate flag 5 | u®@
if(average rate flag) {
accurate statistics flag 5 | u®@
average bit_rate 5 | u(16)
average frame rate 5 | u(16)
}
num_referenced_subseqs 5 | ugv)
for(n=0; n<num_referenced_subsegs; n++) {
ref_sub_seq layer_num 5 | ugv)
ref sub seq_id 5 | ugv)
ref_sub_seq_direction 5 | u®@
}
}

DRAFT ITU-T Rec. H.264 (2002 E)

223

D.1.14

D.1.15

D.1.16

D.1.17

D.1.18

D.1.19

224

Full-frame freeze SEI message syntax
full_frame freeze(payloadSize) { C | Descriptor
full_frame freeze repetition_period 5 | ugv)
}
Full-frame freeze release SEI message syntax
full_frame freeze release(payloadSize) { C | Descriptor
}
Full-frame snapshot SEI message syntax
full_frame_snapshot(payloadSize) { C | Descriptor
snapshot_id 5 | uev)
}
Progressive refinement segment start SEI message syntax
progressive_refinement_segment_start(payloadSize) { C | Descriptor
progressive refinement id 5 | ugv)
num_refinement_steps minusl 5 | ugv)
}
Progressive refinement segment end SEI message syntax
progressive refinement_segment_end(payloadSize) { C | Descriptor
progressive refinement_id 5 | ugv)
}
Motion-constrained slice group set SEI message syntax
motion_constrained_slice group_set(payloadSize) { C | Descriptor
num_slice groups in_set_ minusl 5 | ugv)
for(i=0;i<=num_slice_groups_in_set minusl; i++)
slice group_id[i] 5 [uVv)
exact_sample value match_flag 5 [u®@
pan_scan_rect_flag 5 [u®@
if(pan_scan _rect_flag)
pan_scan_rect_id 5 | ugv)

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

D.1.20 Reserved SEI message syntax

reserved sei_message(payloadSize) { C | Descriptor
for(i=0;i < payloadSize; i++)
reserved_sei_message payload byte 5 | b(8)
}

D.2 SEIl payload semantics

D.2.1 Buffering period SEI message semantics

When NalHrdBpPresentFlag or VclHrdBpPresentFlag are equal to 1, a buffering period SEI message can be associated
with any access unit in the bitstream, and a buffering period SEI message shall be associated with each IDR access unit
and with each access unit associated with arecovery point SEI message.

NOTE — For some applications, the frequent presence of a buffering period SEI message may be desirable.

A buffering period is specified as the set of access units between two instances of the buffering period SEI message in
decoding order.

seq_parameter_set_id specifies the sequence parameter set that contains the sequence HRD attributes. The value of
seq_parameter_set_id shall be equal to the value of seq parameter_set_id in the picture parameter set referenced by the
primary coded picture associated with the buffering period SEI message. The value of seq _parameter_set_id shall bein
the range of 0to 31, inclusive.

initial_cpb_removal_delay[SchedSelldx] specifies the delay for the SchedSelldx-th CPB between the time of arrival
in the CPB of the first bit of the coded data associated with the access unit associated with the buffering period SEI
message and the time of removal from the CPB of the coded data associated with the same access unit, for the first
buffering period after HRD initidisation. The syntax element has a length in bits given by
initial_cpb_removal_delay_length_minusl + 1. It is in units of a 90 kHz clock.
initial_cpb _removal_delay[SchedSelldx] shall not be equal to 0 and shall not exceed 90000 * (CpbSize] SchedSelldx]
, BitRate[SchedSelldx]), the time-equivalent of the CPB size in 90 kHz clock units.

initial_cpb_removal_delay offset] SchedSelldx] is used for the SchedSelldx-th CPB in combination with the
cpb removal_delay to specify the initial delivery time of coded access wunits to the CPB.
initial_cpb_removal_delay_offset[SchedSelldx] is in units of a 90 kHz clock. The
initial_cpb_removal_delay offset[SchedSelldx] syntax element is a fixed length code whose length in bits is given by
initial_cpb_removal_delay_length_minusl + 1. This syntax element is not used by decoders and is needed only for the
delivery scheduler (HSS) specified in Annex C.

Over the entire coded video sequence, the sum of initia_cpb remova delay[SchedSelldx] and
initial_cpb _removal_delay offset] SchedSelldx] shall be constant for each value of SchedSelldx.

D.2.2 Picturetiming SEI message semantics

When CpbDpbDelaysPresentFlag is equal to 1, a picture timing SEI Message shall be associated with every access unit
in the bitstream.

cpb_removal_delay specifies how many clock ticks (see subclause E.2.1) to wait after remova from the CPB of the
access unit associated with the most recent buffering period SEI message before removing from the buffer the access unit
data associated with the picture timing SEI message. This value is also used to calculate an earliest possible time of
arrival of access unit data into the CPB for the HSS, as specified in Annex C. The syntax element is a fixed length code

whose length in bits is given by cpb_removal_delay length_minusl + 1. The cpb_removal_delay is the remainder of a
2(cpb_removal_del ay_length_minusl + 1) counter.

The value of cpb_removal_delay for the first picture in the bitstream shall be equal to O.

dpb_output_delay is used to compute the DPB output time of the picture. It specifies how many clock ticks to wait
after removal of an access unit from the CPB before the decoded picture can be output from the DPB (see subclause
C.2).

NOTE - A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference” or
"used for long-term reference”.

NOTE - Only one dpb_output_delay is specified for a decoded picture.
The size of the syntax element dpb_output_delay is given in bits by dpb_output_delay length minusl + 1.

DRAFT ITU-T Rec. H.264 (2002 E) 225

The output time derived from the dpb_output_delay of any picture that is output from an output timing conforming
decoder as specified in subclause C.2 shall precede the output time derived from the dpb_output_delay of all picturesin
any subsequent coded video sequence in decoding order.

The output time derived from the dpb_output_delay of the second field, in decoding order, of a complementary non-
reference field pair shall exceed the output time derived from the dpb_output_delay of the first field of the same
complementary non-reference field pair.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCnt() as specified by subclauses C.4.1 to C.4.5, except that when the two fields of a complementary
reference field pair have the same value of PicOrderCnt(), the two fields have different output times.

For pictures that are not output by the "bumping” process of subclause C.4.5 because they precede, in decoding order, an
IDR picture with no_output_of_prior_pics flag equal to 1 or inferred to be equal to 1, the output times derived from
dpb_output_delay shall be increasing with increasing value of PicOrderCnt() relative to all pictures within the same
coded video segquence subsequent to any picture having a memory_management_control_operation equal to 5.

pic_struct indicates whether a picture should be displayed as a frame or one or more fields, according to Table D-1.
Frame doubling (pic_struct equal to 7) indicates that the frame should be displayed two times consecutively, and frame
tripling (pic_struct equal to 8) indicates that the frame should be displayed three times consecutively.

NOTE - Frame doubling can facilitate the display, for example, of 25p video on a 50p display and 29.97p video on a 59.94p

display. Using frame doubling and frame tripling in combination on every other frame can facilitate the display of 23.98p video on
a59.94p display.

Table D-1 —Interpretation of pic_struct

Value Indicated display of picture Restrictions NumClockTS
0 frame field pic flag shall be 0 1
1 top field field_pic flag shall be 1, 1
bottom _field flag shall be 0
2 bottom field field_pic_flag shall be 1, 1
bottom field flag shall be 1
3 top field, bottom field, in that order field pic flag shall be 0 2
4 bottom field, top field, in that order field pic flag shall be 0 2
5 top field, bottom field, top field field_pic_flag shall be 0 3
repeated, in that order
6 bottom field, top field, bottom field | field_pic flag shall be O 3
repeated, in that order
7 frame doubling field pic flag shall be 0 2
fixed frame rate flag shall be 1
8 frametripling field pic flag shall be 0 3
fixed_frame rate flag shall be 1
9..15 reserved

NumClockTS is determined by pic_struct as specified in Table D-1. There are up to NumClockTS sets of clock
timestamp information for a picture, as specified by clock_timestamp_flag[i] for each set. The sets of clock timestamp
information apply to the field(s) or the frame(s) associated with the picture by pic_struct.

The contents of the clock timestamp syntax elements indicate a time of origin, capture, or alternative ideal display. This
indicated time is computed as

clockTimestamp=((hH* 60+ mM) * 60 + sS) * time_scae+
nFrames™* (num_units in tick * (1 + nuit_field_based flag)) + tOffset, (D-1)

in units of clock ticks of a clock with clock frequency egual to time_scale Hz, relative to some unspecified point in time

for which clockTimestamp is equal to 0. Output order and DPB output timing are not affected by the value of
clockTimestamp. When two or more frames with pic_struct equal to O are consecutive in output order and have equal

226 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

values of clockTimestamp, the indication is that the frames represent the same content and that the last such frame in
output order isthe preferred representation.

NOTE — clockTimestamp time indications may aid display on devices with refresh rates other than those well-matched to DPB
output times.

clock_timestamp_flag[i] equal to 1 indicates that a number of clock timestamp syntax elements are present and follow
immediately. clock_timestamp flag[i] equal to O indicates that the associated clock timestamp syntax elements are not
present. When NumClockTS is greater than 1 and clock_timestamp_flag[i] is equal to 1 for more than one value of i,
the value of clockTimestamp shall be non-decreasing with increasing value of i.

ct_type indicates the scan type (interlaced or progressive) of the source material as follows:
Two fields of acoded frame may have different values of ct_type.

When clockTimestamp is equal for two fields of opposite parity that are consecutive in output order, both with ct_type
equal to 0 (progressive) or ct_type equal to 2 (unknown), the two fields are indicated to have come from the same
original progressive frame. Two consecutive fields in output order shall have different values of clockTimestamp when
the value of ct_type for either field is 1 (interlaced).

Table D-2 —Mapping of ct_typeto source picture scan

Original

Value picture scan

progressive

interlaced

unknown

w |IN |k (O

reserved

nuit_field based_flag: Used in calculating clockTimestamp, as specified in Equation D-1.
counting_type: Specifies the method of dropping values of the n_frames as specified in Table D-3.

Table D-3 — Definition of counting_type values

Vaue Interpretation

0 no dropping of n_frames count values and no use of
time_offset

1 no dropping of n_frames count values

2 dropping of individual zero values of n_frames count

3 dropping of individual MaxFPS-1 values of n_frames
count

4 dropping of the two lowest (value O and 1) n_frames

counts when seconds value is equa toO and
minutes valueis not an integer multiple of 10

5 dropping of unspecified individua n frames count
values

6 dropping of unspecified numbers of unspecified
n_frames count values

7.31 reserved

full_timestamp_flag equal to 1 specifies that the n_frames syntax element is followed by seconds_value, minutes value,
and hours value. full_timestamp_flag equal to O specifies that the n_frames syntax element is followed by
seconds flag.

DRAFT ITU-T Rec. H.264 (2002 E) 227

discontinuity_flag equal to O indicates that the difference between the current value of clockTimestamp and the value of
clockTimestamp computed from the previous clock timestamp in output order can be interpreted the time difference
between the times of origin or capture of the associated frames or fields. discontinuity flag equal to 1 indicates that the
difference between the current value of clockTimestamp and the value of clockTimestamp computed from the previous
clock timestamp in output order should not be interpreted the time difference between the times of origin or capture of
the associated frames or fields. When discontinuity flag is equa to O, the value of clockTimestamp shall be greater than
or equal to all values of clockTimestamp present for the preceding picture in DPB output order.

cnt_dropped_flag specifies the skipping of one or more values of n_frames using the counting method specified by
counting_type.

n_frames specifies the value of nFrames used to compute clockTimestamp. n_frames shall be less than
MaxFPS = Ceil(time_scale, num_units in tick) (D-2)

NOTE — n_frames is aframe-based counter. For field-specific timing indications, time_offset should be used to indicate a distinct
clockTimestamp for each field.

When counting_type is equal to 2 and cnt_dropped flag is equal to 1, n_frames shall be equal to 1 and the value of
n_frames for the previous picture in output order shall not be equal to 0 unless discontinuity flagisequal to 1.
NOTE — When counting_type is equal to 2, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time_scale equal to 25 and num_units_in_tick equal to 2 and
nuit_field_based_flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to 0 when counting (e.g.,
counting n_frames from O to 12, then incrementing seconds value and counting n_frames from 1 to 12, then incrementing
seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 3 and cnt_dropped flag is equal to 1, n_frames shall be equal to O and the value of
n_frames for the previous picture in output order shall not be equal to MaxFPS — 1 unless discontinuity flag is equal
to 1.
NOTE — When counting_type is equal to 3, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time_scale equal to 25 and num_units_in_tick equal to 2 and
nuit_field_based_flag equal to 0) can be avoided by occasionally skipping over the value n_frames equa to MaxFPS when
counting (e.g., counting n_frames from 0 to 12, then incrementing seconds value and counting n_frames from 0 to 11, then
incrementing seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 4 and cnt_dropped flag is equal to 1, n_frames shall be equal to 2 and the specified

value of sS shall be zero and the specified value of mM shall not be an integer multiple of ten and n_frames for the

previous picture in output order shall not be equal to 0 or 1 unless discontinuity_flag is equal to 1.
NOTE — When counting_type is equal to 4, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 30000, 1001 frames per second with time_scale equal to 60000 and num_units_in_tick equal
to 1001 and nuit_field_based flag equal to 1) can be reduced by occasionally skipping over the value n_frames equal to MaxFPS
when counting (e.g., counting n_frames from 0 to 29, then incrementing seconds_value and counting n_frames from 0 to 29, etc.,
until the seconds value is zero and minutes value is not an integer multiple of ten, then counting n_frames from 2 to 29, then
incrementing seconds_value and counting n_frames from 0 to 29, etc.). This counting method is well known in industry and is
often referred to as "NTSC drop-frame" counting.

When counting_typeisequal to 5 or 6 and cnt_dropped_flag isequal to 1, n_frames shall not be equal to 1 plusthe value
of n_frames for the previous picture in output order modulo MaxFPS unless discontinuity flag is equal to 1.
NOTE — When counting_type is equal to 5 or 6, the need for increasingly large magnitudes of tOffset in Equation D-1 when using

fixed non-integer frame rates can be avoided by occasionally skipping over some values of n_frames when counting. The specific
values of n_frames that are skipped are not specified when counting_type isequal to 5 or 6.

seconds flag equal to 1 specifies that seconds value and minutes flag are present when full_timestamp_flag is equal
to 0. seconds flag equal to O specifies that seconds_value and minutes flag are not present.

seconds value specifies the value of sS used to compute clockTimestamp. The value of seconds value shall be in the
range of 0 to 59, inclusive. When seconds value is not present, the previous seconds value in decoding order shall be
used as sS to compute clockTimestamp.

minutes flag equal to 1 specifies that minutes value and hours flag are present when full _timestamp_flag is equal to O
and seconds flag isequal to 1. minutes flag equal to O specifies that minutes value and hours flag are not present.

minutes_value specifies the value of mM used to compute clockTimestamp. The value of minutes value shall be in the
range of 0 to 59, inclusive. When minutes value is not present, the previous minutes value in decoding order shall be
used as mM to compute clockTimestamp.

hours flag equal to 1 specifies that hours value is present when full_timestamp_flag is equal to O and seconds flag is
equal to 1 and minutes flagisequal to 1.

228 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

hours _value specifies the value of hH used to compute clockTimestamp. The value of hours value shall be in the range
of 0to 23, inclusive. When hours value is not present, the previous hours value in decoding order shall be used as hH
to compute clockTimestamp.

time_offset specifies the value of tOffset used to compute clockTimestamp. The number of bits used to represent
time_offset shall be equal to time_offset_length. When time_offset is not present, the value 0 shall be used as tOffset to
compute clockTimestamp.

D.2.3 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message syntax elements specify the coordinates of a rectangle relative to the cropping
rectangle of the sequence parameter set. Each coordinate of this rectangle is specified in units of one-sixteenth sample
spacing relative to the luma sampling grid.

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the pan-scan rectangle (for
example, to identify the rectangle as the area to be shown on a particular display device or as the area that contains a
particular actor in the scene). The value of pan_scan _rect_id shall bein the range of 0to 2% — 1, inclusive.

Values of pan_scan rect_id from 0 to 255 and from 512 to 2*'-1 may be used as determined by the application. Values
of pan_scan _rect_id from 256 to 511 and from 2 to 2%%-1 are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of pan_scan_rect_id in the range of 256 to 511 or in the range of 2** to 2*? - 1 shall ignore (remove
from the bitstream and discard) it.

pan_scan_rect_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of a previous pan-scan
rectangle SEI message. pan_scan rect_cancel_flag equal to O indicates that the SEI message does not cancel the
persistence of a previous pan-scan rectangle SEI message and that pan-scan rectangle information follows.

pan_scan_cnt_minusl specifies the number of pan-scan rectangles that are present in the SEI message.
pan_scan_cnt_minusl shall be in the range of 0 to 2, inclusive. pan_scan _cnt_minusl equal to 0 indicates that a single
pan-scan rectangle is present that applies to all fields of the decoded picture. pan_scan_cnt_minusl shall be equal to O
when the current picture is afield. pan_scan_cnt_minusl equal to 1 indicates that two pan-scan rectangles are present,
the first of which applies to the first field of the picture in output order and the second of which applies to the second
field of the picture in output order. pan_scan_cnt_minusl equal to 2 indicates that three pan-scan rectangles are present,
the first of which applies to the first field of the picturein output order, the second of which applies to the second field of
the picture in output order, and the third of which applies to arepetition of the first field as athird field in output order.

pan_scan_rect_left offset[i], pan_scan_rect_right_offset[i], pan_scan_rect_top_offset[i], and
pan_scan_rect_bottom_offset[i], specify, as signed integer quantities in units of one-sixteenth sample spacing relative
to the luma sampling grid, the location of the pan-scan rectangle. The values of each of these four syntax elements shall
bein the range of -2** to 2* - 1, inclusive.

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to a luma frame sampling grid, as
the area of the rectangle with coordinates as follows:

— If frame_mbs only flag is equal tol, the pan-scan rectangle has luma frame horizontal coordinates from
32 * frame crop left offset + pan_scan rect left offset[i] to32 * (8 * PicWidthinMbs -
frame crop_right_offset) + pan_scan rect right offset[i] — 1 and with vertical coordinates from 32 *
frame crop_top offset + pan_scan rect top offset[i] to 32* (8 * PicHeightinMbs— frame_crop_bottom_offset)
+ pan_scan rect_bottom offset[i] — 1, inclusive. In this case, the value of 32 * frame crop left offset +
pan_scan rect_left offset] i] shall be lessthan or equal to 32 * (8 * PicWidthinMbs — frame crop right_offset) +
pan_scan_rect_right_offset[i] — 1; and the value of 32 * frame_crop_top_offset + pan_scan_rect_top_offset] i]
shal be less than or egual to 32 * (8 * PicHeightinMbs — frame crop bottom_offset) +
pan_scan_rect_bottom_offset[i] — 1.

— Otherwise (frame_mbs_only flag is equal to 0), the pan-scan rectangle has luma frame horizontal coordinates from
32 * frame crop left offset + pan scan rect left offset[i] to 32 * (8 * PicWidthinMbs -
frame crop_right_offset) + pan_scan rect right offsetfi] — 1 and with vertical coordinates from 64 *
frame crop_top offset + pan_scan rect top offset[i] to 64 * (4 * PicHeightinMbs— frame_crop_bottom_offset)
+ pan_scan rect_bottom offset[i] — 1, inclusive. In this case, the value of 32 * frame crop left offset +
pan_scan rect_left offset] i] shall be lessthan or equal to 32 * (8 * PicWidthinMbs — frame _crop_right_offset) +
pan_scan rect_right offset[i] — 1; and the value of 64 * frame crop_top_offset + pan_scan _rect top offset] i]
shall be less than or egua to 64 * (4 * PicHeightinMbs — frame crop bottom_offset) +
pan_scan_rect_bottom_offset[i] — 1.

When the pan-scan rectangular area includes samples outside of the cropping rectangle, the region outside of the
cropping rectangle may be filled with synthesized content (such as black video content or neutral grey video content) for

display.

DRAFT ITU-T Rec. H.264 (2002 E) 229

pan_scan_rect_repetition_period indicates whether another pan-scan rectangle SEI message with the same value of
pan_scan rect_id shall be present in the bitstream and specifies the picture order count interval within which it will be
present. The value of pan scan_rect repetition_period shall be in the range of 0 to 16 384, inclusive. When
pan_scan_cnt_minusl is greater than 0, pan_scan_rect_repetition_period shall not be greater than 1.

pan_scan rect_repetition_period equal to O specifies that the pan-scan rectangle information applies to the current
decoded picture only.

pan_scan rect_repetition_period equal to 1 specifies that the pan-scan rectangle information persists in output order until
any of the following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing a pan-scan rectangle SEI message with the same vaue of
pan_scan rect_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

pan_scan rect_repetition_period equal to 0 or equal to 1 indicates that another pan-scan rectangle SEI message with the
same value of pan_scan_rect_id may or may not be present.

pan_scan rect_repetition_period greater than 1 specifies that the pan-scan rectangle information persists until any of the
following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing a pan-scan rectangle SEI message with the same value of
pan_scan rect_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) +
pan_scan_rect_repetition_period.

pan_scan rect_repetition_period greater than 1 indicates that another pan-scan rectangle SEI message with the same
value of pan_scan_rect_id shall be present for a picture in an access unit that is output having PicOrderCnt() less than or
equal to PicOrderCnt(CurrPic) + pan_scan_rect_repetition_period; unless a new coded video sequence begins without
output of such apicture.

D.2.4 Filler payload SEI message semantics
This message contains a series of payloadSize bytes of value OxFF, which can be discarded.
ff_byte shall be a byte having the value OxFF.

D.25 User dataregistered by ITU-T Recommendation T.35 SEI message semantics

This message contains user data registered as specified by ITU-T Recommendation T.35, the contents of which are not
specified by this Recommendation | International Standard.

itu_t_t35_country_code shal be a byte having a value specified as a country code by ITU-T Recommendation T.35
Annex A.

itu_t t35 country code extension_byte shall be a byte having a value specified as a country code by ITU-T
Recommendation T.35 Annex B.

itu_t t35 payload_byte shall be a byte containing data registered as specified by ITU-T Recommendation T.35.

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more
bytes of theitu_t t35 payload_byte, in the format specified by the Administration that issued the terminal provider code.
Any remaining itu_t t35 payload byte data shall be data having syntax and semantics as specified by the entity
identified by the ITU-T T.35 country code and terminal provider code.

D.2.6 User dataunregistered SEI message semantics

This message contains unregistered user data identified by a UUID, the contents of which are not specified by this
Recommendation | International Standard.

uuid_iso_iec 11578 shall have a value specified as a UUID according to the procedures of 1SO/IEC 11578:1996 Annex
A.

user_data payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID
generator.

D.2.7 Recovery point SEI message semantics

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the sequence.
When the decoding process is started with the access unit in decoding order associated with the recovery point SEI

230 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

message, all decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are
indicated to be correct or approximately correct in content. Decoded pictures produced by random access at or before the
picture associated with the recovery point SEI message need not be correct in content until the indicated recovery point,
and the operation of the decoding process starting at the picture associated with the recovery point SEI message may
contain references to pictures not available in the decoded picture buffer.

In addition, by use of the broken_link_flag, the recovery point SEI message can indicate to the decoder the location of
some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process
was begun at the location of a previous IDR access unit in decoding order.
NOTE — The broken_link_flag can be used by encoders to indicate the location of a point after which the decoding process for the
decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the
pictures that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed during
the generation of the bitstream).

The recovery point is specified as a count in units of access units subsequent to the current access unit at the position of
the SEI message.
NOTE — When HRD information is present in the bitstream, a buffering period SEI message should be associated with the access

unit associated with the recovery point SEI message in order to establish initialisation of the HRD buffer model after a random
access.

recovery frame_cnt specifies the recovery point of output picturesin output order. All decoded pictures in output order
are indicated to be correct or approximately correct in content starting at the output order position of the reference picture
having the frame_num equal to the frame_num of the VCL NAL units for the current access unit incremented by
recovery frame cnt in modulo MaxFrameNum arithmetic. recovery frame cnt shall be in the range of 0 to
MaxFrameNum — 1, inclusive.

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order
derived by starting the decoding process at the access unit associated with the recovery point SEI message shall be an
exact match to the pictures that would be produced by starting the decoding process at the location of a previous IDR
access unit in the NAL unit stream. The value 0 indicates that the match need not be exact and the value 1 indicates that
the match shall be exact.

When decoding starts from the location of the recovery point SEI message, all references to not available reference
pictures shall be inferred as references to pictures containing only macroblocks coded using Intra macroblock prediction
modes and having sample values given by Y samples equal to 128, Cb samples equal to 128, and Cr samples equal to
128 (mid-level grey) for purposes of determining the conformance of the value of exact_match_flag.

NOTE — When performing random access, decoders should infer al references to not available reference pictures as references to

pictures containing only intra macroblocks and having sample values given by Y equal to 128, Cb equal to 128, and Cr equal to
128 (mid-level grey), regardless of the value of exact_match_flag.

When exact_match flag is equal to O, the quality of the approximation at the recovery point is chosen by the encoding
process and is not specified by this Recommendation | International Standard.

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the
recovery point SEI message and is assigned further semantics as follows.

- If broken_link_flag is equal to 1, pictures produced by starting the decoding process at the location of a previous
IDR access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to the
access unit associated with the recovery point SEI message in decoding order should not be displayed until the
specified recovery point in output order.

- Otherwise (broken_link flag is equal to0), no indication is given regarding any potential presence of visua
artefacts.

Regardless of the value of the broken_link_flag, pictures subsequent to the specified recovery point in output order are
specified to be correct or approximately correct in content.
NOTE — When a sub-sequence information SEI message is present in conjunction with a recovery point SEI message in which
broken_link_flag is equal to1 and when sub_seq layer num is equal to O, sub_seq id should be different from the latest

sub_seq id for sub_seq layer_num equal to O that was decoded prior to the location of the recovery point SEI message. When
broken_link_flag is equal to O, the sub_seq id in sub-sequence layer O should remain unchanged.

changing_slice group_idc equal to O indicates that decoded pictures are correct or approximately correct in content at
and subsequent to the recovery point in output order when all macroblocks of the primary coded pictures are decoded
within the changing slice group period, i.e., the period between the access unit associated with the recovery point SEI
message (inclusive) and the specified recovery point (exclusive) in decoding order. changing_slice_group_idc shall be
equal to 0 when num_slice_groups minusl is equal to 0 in any primary coded picture within the changing slice group
period.

DRAFT ITU-T Rec. H.264 (2002 E) 231

When changing_slice_group_idc is equal to 1 or 2, num_slice_groups_minusl shall be equal to 1 and the macrobl ock-to-
dlice-group map type 3, 4, or 5 shall be applied in each primary coded picture in the changing slice group period.

changing_slice_group_idc equal to 1 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by dlice group O are used for inter prediction of any macroblock within slice group 0. In
addition, changing_slice group_idc equal to 1 indicates that when all macroblocks in slice group 0 within the changing
dlice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to
the specified recovery point in output order regardless of whether any macroblock in slice group 1 within the changing
slice group period is decoded.

changing_slice_group_idc equal to 2 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 1 are used for inter prediction of any macroblock within slice group 1. In
addition, changing_slice_group_idc equal to 2 indicates that when all macroblocks in slice group 1 within the changing
slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to
the specified recovery point in output order regardless of whether any macroblock in slice group 0 within the changing
slice group period is decoded.

changing_slice group_idc shall be in the range of 0 to 2, inclusive.

D.2.8 Decoded reference picture marking repetition SEI message semantics

The decoded reference picture marking repetition SEI message is used to repeat the decoded reference picture marking
syntax structure that was located in the slice header of an earlier picture in the sequence in decoding order.

original_idr_flag shall be equal to 1 when the decoded reference picture marking syntax structure occurred originally in
an IDR picture. original_idr_flag shall be equal to O when the repeated decoded reference picture marking syntax
structure did not occur in an IDR picture originally.

original_frame_num shal be equal to the frame num of the picture where the repeated decoded reference picture
marking syntax structure originally occurred. The picture indicated by origina_frame_num is the previous coded picture
having the specified value of frame num. The value of origina_frame num used to refer to a picture having a
memory_management_control_operation equal to 5 shall be 0.

original_field_pic_flag shall be equal to the field_pic_flag of the picture where the repeated decoded reference picture
marking syntax structure originally occurred.

original_bottom_field flag shall be equal to the bottom field flag of the picture where the repeated decoded reference
picture marking syntax structure originally occurred.

dec_ref pic_marking() shall contain a copy of the decoded reference picture marking syntax structure of the picture
whose frame num was origina_frame num. The nal_unit type used for specification of the repeated
dec_ref_pic_marking() syntax structure shall be the nal_unit_type of the slice header(s) of the picture whose frame_num
was origina_frame _num (i.e., nal_unit_type as used in subclause 7.3.3.3 shall be considered equal to5 when
original_idr_flagisequal to 1 and shall not be considered equal to 5 when original_idr_flag is equal to 0).

D.2.9 Sparepicture SEI message semantics

This SEI message indicates that certain slice group map units, called spare slice group map units, in one or more decoded
reference pictures resemble the co-located slice group map units in a specified decoded picture called the target picture.
A spare slice group map unit may be used to replace a co-located, incorrectly decoded slice group map unit, in the target
picture. A decoded picture containing spare slice group map unitsis called a spare picture.

For al spare pictures identified in a spare picture SEI message, the value of frame mbs only flag shall be equal to the
value of frame_mbs_only_flag of the target picture in the same SEI message. The spare pictures in the SEI message are
constrained as follows.

- If thetarget pictureis adecoded field, al spare picturesidentified in the same SEI message shall be decoded fields.

- Otherwise (the target picture is a decoded frame), all spare pictures identified in the same SEI message shall be
decoded frames.

For all spare pictures identified in a spare picture SEI message, the values of pic_width in_mbs minusl and
pic_height_in_map units minusl shall be equa to the values of pic_width_in_mbs minusl and
pic_height_in_map_units_ minusl, respectively, of the target picture in the same SEI message. The picture associated (as
specified in subclause 7.4.1.2.3) with this message shall appear after the target picture, in decoding order.

target_frame_num indicates the frame_num of the target picture.

spare field_flag equal to O indicates that the target picture and the spare pictures are decoded frames. spare field flag
equal to 1 indicates that the target picture and the spare pictures are decoded fields.

232 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

target_bottom_field flag equal to O indicates that the target picture is a top field. target_bottom_field flag equal to 1
indicates that the target picture is a bottom field.

A target picture is a decoded reference picture whose corresponding primary coded picture precedes the current picture,
in decoding order, and in which the values of frame num, field pic flag (when present) and bottom field flag (when
present) are equal to target_frame num, spare field flag and target_bottom field flag, respectively.

num_spare_pics minusl indicates the number of spare pictures for the specified target picture. The number of spare
pictures is equal to num_spare pics minusl + 1. The value of num_spare pics minusl shall be in the range of 0 to 15,
inclusive.

delta spare frame num[i] isused to identify the spare picture that contains the i-th set of spare slice group map units,
hereafter called the i-th spare picture, as specified below. The value of delta spare frame num[i] shal be in the range
of 0 to MaxFrameNum - 1 - Ispare _field flag, inclusive.

The frame_num of the i-th spare picture, spareFrameNum[i], is derived as follows for al values of i from O to
num_spare_pics_minusl, inclusive:

candidateSpareFrameNum = target_frame_num - !spare field_flag
for (i =0; i <= num_spare pics minusl; i++) {

if(candidateSpareFrameNum < 0)
candidateSpareFrameNum = MaxFrameNum — 1
spareFrameNum|[i] = candidateSpareFrameNum — delta_spare frame _num[i] (D-3)

if(spareFrameNum[i] <0)
spareFrameNum([i | = MaxFrameNum + spareFrameNum[i]
candidateSpareFrameNum = spareFrameNum([i] - !spare field_flag
}

spare bottom _field flag[i] equal to O indicates that the i-th spare picture is a top field. spare_bottom_field flag[i]
equal to 1 indicates that the i-th spare picture is a bottom field.

The 0-th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the target
picture, in decoding order, and in which the values of frame_num, field pic flag (when present) and bottom_field flag
(when present) are equal to spareFrameNum[0], spare field flag and spare_bottom field flag[0], respectively. Thei-
th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the (i - 1)-th spare
picture, in decoding order, and in which the values of frame_num, field pic flag (when present) and bottom field flag
(when present) are equal to spareFrameNum[i], spare field flag and spare bottom field flag[i], respectively.

spare area_idc[i] indicates the method used to identify the spare slice group map units in the i-th spare picture.
spare_area idc[i] shall be in the range of 0 to 2, inclusive. spare area idc[i] equal to O indicates that all slice group
map units in the i-th spare picture are spare units. spare area idc[i] equal to 1 indicates that the value of the syntax
element spare _unit_flag[i][j] isused to identify the spare slice group map units. spare_area idc| i] equal to 2 indicates
that the zero_run_length[i][j] syntax element is used to derive the values of spareUnitFlaginBoxOutOrder[i][]], as
described below.

spare _unit_flag[i][j] equal to O indicates that the j-th slice group map unit in raster scan order in the i-th spare picture
isaspare unit. spare_unit_flag[i][j] equa to 1 indicates that the j-th slice group map unit in raster scan order in thei-th
spare pictureis not a spare unit.

zero run_length[i][]] is used to derive the values of spareUnitFlaginBoxOutOrder[i][j] when spare area idc[i] is
equal to 2. In this case, the spare slice group map units identified in spareUnitFlaginBoxOutOrder[i][j] appear in
counter-clockwise box-out order, as specified in subclause 8.2.24, for each spare picture
spareUnitFlaginBoxOutOrder[i][j] equal to O indicates that the j-th slice group map unit in counter-clockwise box-out
order in the i-th spare picture is a spare unit. spareUnitFlaginBoxOutOrder[i][j] equal to 1 indicates that the j-th slice
group map unit in counter-clockwise box-out order in the i-th spare picture is not a spare unit.

When spare area idc[0] isequal to 2, spareUnitFlaginBoxOutOrder[O][j] is derived asfollows:

for(j =0, loop = 0; j < PicSizelnMapUnits; loop++) {
for(k =0; k <zero_run_length[O][loop]; k++)
spareUnitFlaginBoxOutOrder[O][j++]=0 (D-4)
spareUnitFlaginBoxOutOrder[O][j++] =1
}

When spare_area idc[i] isequal to 2 and the value of i is greater than 0, spareUnitFlaginBoxOutOrder[i][j] is derived
asfollows:

DRAFT I TU-T Rec. H.264 (2002 E) 233

for(j =0, loop = 0; j < PicSizelnMapUnits; loop++) {
for(k =0; k <zero_run_length[i][loop]; k++)
spareUnitFlaginBoxOutOrder[i][j] = spareUnitFlaginBoxOutOrder[i - 1][j++] (D-5)
spareUnitFlaginBoxOutOrder[i][j] = !'spareUnitFlaginBoxOutOrder[i - 1][j++]

}

D.2.10 Sceneinformation SEI message semantics

A scene and a scene transition are herein defined as a set of consecutive picturesin output order.

NOTE - Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label
pictures with scene identifiers and to indicate scene changes. The message specifies how the source pictures for the labelled
pictures were created. The decoder may use the information to select an appropriate algorithm to conceal transmission errors. For
example, a specific agorithm may be used to conceal transmission errors that occurred in pictures belonging to a gradual scene
transition. Furthermore, the scene information SEI message may be used in a manner determined by the application, such as for
indexing the scenes of a coded sequence.

A scene information SEI message labels all pictures, in decoding order, from the primary coded picture to which the SEI
message is associated (inclusive), as specified in subclause 7.4.1.2.3, to the primary coded picture to which the next
scene information SEI message (if present) in decoding order is associated (exclusive) or (otherwise) to the last access
unit in the bitstream (inclusive). These pictures are herein referred to as the target pictures.

scene_info_present_flag equal to O indicates that the scene or scene transition to which the target pictures belong is
unspecified. scene info_present flag equal to 1 indicates that the target pictures belong to the same scene or scene
transition.

scene_id identifies the scene to which the target pictures belong. When the value of scene_transition_type of the target
pictures is less than 4, and the previous picture in output order is marked with a value of scene transition_type less
than 4, and the value of scene id is the same as the value of scene id of the previous picture in output order, this
indicates that the source scene for the target pictures and the source scene for the previous picture (in output order) are
considered by the encoder to have been the same scene. When the value of scene_transition_type of the target picturesis
greater than 3, and the previous picture in output order is marked with a value of scene_transition_type less than 4, and
the value of scene _id is the same as the value of scene_id of the previous picture in output order, this indicates that one
of the source scenes for the target pictures and the source scene for the previous picture (in output order) are considered
by the encoder to have been the same scene. When the value of scene id is not equal to the value of scene id of the
previous picture in output order, this indicates that the target pictures and the previous picture (in output order) are
considered by the encoder to have been from different source scenes.

The value of scene_id shall bein the range of 0 to 2%%-1, inclusive. Values of scene id in the range of 0 to 255, inclusive,
and in the range of 512 to 2*! — 1, inclusive, may be used as determined by the application. Vaues of scene id in the
range of 256 to 511, inclusive, and in the range of 2* to 221, inclusive, are reserved for future use by ITU-T |
ISO/IEC. Decoders encountering a value of scene id in the range of 256 to 511, inclusive, or in the range of 2*
to 2% - 1, inclusive, shall ignore (remove from the bitstream and discard) it.

scene_transition_type specifies in which type of a scene transition (if any) the target pictures are involved. The valid
values of scene_transition_type are specified in Table D-4.

Table D-4 — scene_transition_type values.

Value Description

No transition

Fade to black

Fade from black

Unspecified transition from or to constant colour
Dissolve

Wipe

o) O A W] N | O

Unspecified mixture of two scenes

When scene_transition_type is greater than 3, the target pictures include contents both from the scene labelled by its
scene_id and the next scene, in output order, which is labelled by second_scene id (see below). The term “the current
scene’ is used to indicate the scene labelled by scene id. The term “the next scene” is used to indicate the scene labelled
by second_scene id. It is not required for any following picture, in output order, to be labelled with scene id equa to
second_scene id of the current SEI message.

234 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Scene transition types are specified as follows.

“No transition” specifies that the target pictures are not involved in a gradual scene transition.

NOTE - When two consecutive pictures in output order have scene_transition_type equal to 0 and different values of scene id, a
scene cut occurred between the two pictures.

“Fade to black” indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade to
black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples of the scene
gradually approach 128.

NOTE — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade to black",
the later one, in output order, is darker than the previous one.

“Fade from black” indicates that the target pictures are part of a sequence of pictures, in output order, involved in afade
from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma samples of
the scene may gradually diverge from 128.

NOTE — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade from
black", the later onein output order islighter than the previous one.

“Dissolve” indicates that the sample values of each target picture (before encoding) were generated by calculating a sum
of co-located weighted sample values of a picture from the current scene and a picture from the next scene. The weight
of the current scene gradually decreases from full level to zero level, whereas the weight of the next scene gradualy
increases from zero level to full level. When two pictures are labelled to belong to the same scene transition and their
scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output order, is less than the
weight of the current scene for the previous one, and the weight of the next scene for the later one, in output order, is
greater than the weight of the next scene for the previous one.

"Wipe" indicates that some of the sample values of each target picture (before encoding) were generated by copying co-
located sample values of a picture in the current scene and the remaining sample values of each target picture (before
encoding) were generated by copying co-located sample values of a picture in the next scene. When two pictures are
labelled to belong to the same scene transition and their scene transition type is "Wipe", the number of samples copied
from the next scene to the later picture in output order is greater than the number of samples copied from the next scene
to the previous picture.

second_scene _id identifies the next scene in the gradual scene transition in which the target pictures are involved. The
value of second_scene id shall not be equal to the value of scene id. The value of second_scene id shall not be equal to
the value of scene id in the previous picture in output order. When the next picture in output order is marked with a
value of scene_transition_type less than 4, and the value of second scene id is the same as the value of scene id of the
next picture in output order, this indicates that the encoder considers one of the source scenes for the target pictures and
the source scene for the next picture (in output order) to have been the same scene. When the value of second scene id
is not equal to the value of scene id or second scene id (if present) of the next picture in output order, this indicates that
the encoder considers the target pictures and the next picture (in output order) to have been from different source scenes.

When the value of scene id of apicture is equal to the value of scene id of the following picture in output order and the
value of scene_transition_type in both of these pictures is less than 4, this indicates that the encoder considers the two
pictures to have been from the same source scene. When the values of scene id, scene transition type and
second_scene id (if present) of a picture are equa to the values of scene _id, scene_transition_type and second_scene id
(respectively) of the following picture in output order and the value of scene transition_type is greater than O, this
indicates that the encoder considers the two pictures to have been from the same source gradual scene transition.

The value of second_scene id shall be in the range of 0 to 2%2-1, inclusive. Values of second_scene id in the range of 0
to 255, inclusive, and in the range of 512 to 2*!-1, inclusive, may be used as determined by the application. Values of
second_scene id in the range of 256 to 511, inclusive, and in the range of 2°* to 2%-1, inclusive, are reserved for future
use by ITU-T | ISO/IEC. Decoders encountering a value of second_scene id in the range of 256 to 511, inclusive, or in
the range of 2** to 2°>-1, inclusive, shall ignore (remove from the bitstream and discard) it.

D.2.11 Sub-sequenceinformation SEI message semantics

The sub-sequence information SEI message is used to indicate the position of a picture in data dependency hierarchy that
consists of sub-sequence layers and sub-sequences.

A sub-sequence layer contains a subset of the coded pictures in a sequence. Sub-sequence layers are numbered with non-
negative integers. A layer having a larger layer number is a higher layer than a layer having a smaller layer number. The
layers are ordered hierarchically based on their dependency on each other so that any picture in a layer shall not be
predicted from any picture on any higher layer.

NOTE - In other words, any picture in layer O must not be predicted from any picture in layer 1 or above, picturesin layer 1 may
be predicted from layer O, picturesin layer 2 may be predicted from layers 0 and 1, etc.

NOTE: The subjective quality is expected to increase a ong with the number of decoded layers.

DRAFT I TU-T Rec. H.264 (2002 E) 235

A sub-sequence is a set of coded pictures within a sub-sequence layer. A picture shall reside in one sub-sequence layer
and in one sub-sequence only. Any picture in a sub-sequence shall not be predicted from any picture in another sub-
seguence in the same or in a higher sub-sequence layer. A sub-sequence in layer O can be decoded independently of any
picture that does not belong to the sub-sequence.

The sub-sequence information SEI message concerns the current access unit. The primary coded picture in the access
unit is herein referred to as the current picture.

The sub-sequence information SEI message shall not be present unless gaps_in_frame_num_vaue_allowed flag in the
sequence parameter set referenced by the picture associated with the sub-sequence SEI message is equal to 1.

sub_seq_layer_num specifies the sub-sequence layer number of the current picture. When sub_seq layer num is
greater than 0, memory management control operations shall not be used in any slice header of the current picture.
When the current picture resides in a sub-sequence whose first picture in decoding order is an IDR picture, the value of
sub_seq layer num shall be equal to 0. For a non-paired reference field, the value of sub_seq layer num shall be equal
to 0. sub_seq layer num shall bein the range of 0 to 255, inclusive.

sub_seq_id identifies the sub-sequence within a layer. When the current picture resides in a sub-sequence whose first
picture in decoding order is an IDR picture, the value of sub_seq id shall be the same as the value of idr_pic id of the
IDR picture. sub_seq id shall bein the range of 0 to 65535, inclusive.

first_ref_pic_flag equal to 1 specifies that the current picture is the first reference picture of the sub-sequence in
decoding order. When the current picture is not the first picture of the sub-sequence in decoding order, the
first_ref_pic flag shall be equal to 0.

leading_non_ref_pic_flag equal to 1 specifies that the current picture is a non-reference picture preceding any reference
picture in decoding order within the sub-sequence or that the sub-sequence contains no reference pictures. When the
current picture is a reference picture or the current picture is a non-reference picture succeeding at least one reference
picture in decoding order within the sub-sequence, the leading_non_ref pic flag shall be equal to 0.

last_pic_flag equal to 1 indicates that the current picture is the last picture of the sub-sequence (in decoding order),
including all reference and non-reference pictures of the sub-sequence. When the current picture is not the last picture of
the sub-sequence (in decoding order), last_pic_flag shall be equal to 0.

The current picture is assigned to a sub-sequence as follows.

- If one or more of the following conditions is true, the current picture is the first picture of a sub-sequence in
decoding order.

- no earlier picture in decoding order is labelled with the same values of sub_seq id and sub_seq layer_num as
the current picture

- the vaue of leading_non_ref_pic_flag is equal to 1 and the value of leading_non_ref_pic flag is equa to0in
the previous picture in decoding order having the same values of sub_seq id and sub_seq layer num as the
current picture

- the vaue of first_ref pic flag is equal to 1 and the value of leading_non_ref pic flag is equal to O in the
previous picture in decoding order having the same values of sub_seq id and sub_seq layer num as the current
picture

- the value of last_pic_flag is equal to 1 in the previous picture in decoding order having the same values of
sub_seq id and sub_seq layer num as the current picture

- Otherwiseg, the current picture belongs to the same sub-sequence as the previous picture in decoding order having the
same values of sub_seq id and sub_seq layer_num as the current picture.

sub_seq_frame num_flag equal to O specifies that sub_seq frame num is not present. sub_seq frame num_flag equal
to 1 specifies that sub_seq frame _numis present.

sub_seq_frame _num shall be equal to O for the first reference picture of the sub-sequence and for any non-reference
picture preceding the first reference picture of the sub-sequence in decoding order. sub_seq frame num is further
constrained as follows.

- If the current pictureis not the second field of a complementary field pair, sub_seq frame_num shall be incremented
by 1, in modulo MaxFrameNum operation, relative to the previous reference picture, in decoding order, that belongs
to the sub-sequence.

- Otherwise (the current picture is the second field of a complementary field pair), the value of sub_seq frame num
shall be the same as the value of sub_seq frame_num for the first field of the complementary field pair.

sub_seq frame_num shall be in the range of 0 to MaxFrameNum — 1, inclusive.

236 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

When the current picture is an IDR picture, it shall start a new sub-sequence in sub-sequence layer 0. Thus, the
sub_seq layer num shall be 0, the sub_seq id shall be different from the previous sub-sequence in sub-sequence layer 0,
first_ref_pic flag shall be 1, and leading_non_ref pic_flag shall be equal to 0.

When the sub-segquence information SEI message is present for both coded fields of a complementary field pair, the
values of sub_seq layer num, sub_seq id, leading non_ref pic flag and sub_seq frame num, when present, shall be
identical for both of these pictures.

When the sub-sequence information SEI message is present only for one coded field of a complementary field pair, the
values of sub_seq layer num, sub_seq id, leading non ref pic flag and sub_seq frame num, when present, are also
applicable to the other coded field of the complementary field pair.

D.2.12 Sub-sequencelayer characteristics SEI message semantics
The sub-sequence layer characteristics SEI message specifies the characteristics of sub-sequence layers.

num_sub_seq_layers minusl plus 1 specifies the number of sub-sequence layers in the sequence.
num_sub_seq layers minusl shall be in the range of 0 to 255, inclusive.

A pair of average bit rate and average frame rate characterizes each sub-sequence layer. The first pair of
average bit_rate and average frame rate specifies the characteristics of sub-sequence layer 0. When present, the second
pair specifies the characteristics of sub-sequence layers 0 and 1 jointly. Each pair in decoding order specifies the
characteristics for a range of sub-sequence layers from layer number O to the layer number specified by the layer loop
counter. The values are in effect from the point they are decoded until an update of the values is decoded.

accurate statistics flag equal to 1 indicates that the values of average bit rate and average frame rate are rounded
from statistically correct values. accurate statistics flag equal to O indicates that the average bit rate and the
average frame rate are estimates and may deviate somewhat from the correct values.

When accurate statistics flag is equal to 0, the quality of the approximation used in the computation of the values of
average bit_rate and the average frame rate is chosen by the encoding process and is not specified by this
Recommendation | International Standard.

average bit_rate indicates the average bit rate in units of 1000 bits per second. All NAL units in the range of sub-
seguence layers specified above are taken into account in the calculation. The average bit rate is derived according to the
access unit removal time specified in Annex C of the Recommendation | International Standard. In the following, bTotal
is the number of bitsin all NAL units succeeding a sub-sequence layer characteristics SEI message (including the bits of
the NAL units of the current access unit) and preceding the next access unit (in decoding order) including a sub-sequence
layer characteristics SEI message (if present) or the end of the stream (otherwise). t; is the removal time (in seconds) of
the current access unit, and t, is the removal time (in seconds) of the latest access unit (in decoding order) before the next
sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise).

When accurate statistics flagisequal to 1, the following conditions shall be fulfilled as follows.
- If tyisnot equal tot,, the following condition shall be true

average bit_rate == Round(bTotal , ((t,—t;)* 1000))) (D-6)
- Otherwise (t; isequal tot,), the following condition shall be true
average bit_rate == (D-7)

average frame rate indicates the average frame rate in units of frames/(256 seconds). All NAL units in the range of
sub-sequence layers specified above are taken into account in the calculation. In the following, fTotal is the number of
frames, complementary field pairs and non-paired fields between the current picture (inclusive) and the next sub-
sequence layer characteristics SEI message (if present) or the end of the stream (otherwise). t; is the removal time (in
seconds) of the current access unit, and t;, is the removal time (in seconds) of the latest access unit (in decoding order)
before the next sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise).

When accurate statistics flagisequal to 1, the following conditions shall be fulfilled as follows.

- If tyisnot equal to t,, the following condition shall be true
average frame rate == Round(fTotal * 256, (t,—1t;)) (D-8)
- Otherwise (t; isequal tot,), the following condition shall be true

average frame rate == (D-9)

DRAFT ITU-T Rec. H.264 (2002 E) 237

D.2.13 Sub-sequence characteristics SEI message semantics

The sub-sequence characteristics SEI message indicates the characteristics of a sub-sequence. It also indicates inter
prediction dependencies between sub-sequences. This message shall be contained in the first access unit in decoding
order of the sub-sequence to which the sub-sequence characteristics SEI message applies. This sub-sequence is herein
called the target sub-sequence.

sub_seq_layer _num identifies the sub-sequence layer number of the target sub-sequence. sub_seq layer num shall be
in the range of 0 to 255, inclusive.

sub_seq_id identifies the target sub-sequence. sub_seq id shall bein the range of 0 to 65535, inclusive.
duration_flag equal to O indicates that the duration of the target sub-sequence is not specified.
sub_seq_duration specifies the duration of the target sub-sequencein clock ticks of a 90-kHz clock.

average rate flag equal to O indicates that the average bit rate and the average frame rate of the target sub-sequence are
unspecified.

accurate statistics flag indicates how reliable the values of average bit rate and average frame rate are.
accurate statistics flag equal to 1, indicates that the average bit rate and the average frame rate are rounded from
statistically correct values. accurate statistics flag equal toO indicates that the average bit rate and the
average frame rate are estimates and may deviate from the statistically correct values.

average bit_rate indicates the average bit rate in (1000 bits)/second of the target sub-sequence. All NAL units of the
target sub-sequence are taken into account in the calculation. The average bit rate is derived according to the access unit
removal time specified in subclause C.1.2. In the following, nB is the number of bits in al NAL units in the sub-
seguence. t; is the removal time (in seconds) of the first access unit of the sub-sequence (in decoding order), and t, isthe
removal time (in seconds) of the last access unit of the sub-sequence (in decoding order).

When accurate statistics flagisequal to 1, the following conditions shall be fulfilled as follows.

- If tyisnot equa to t,, the following condition shall be true

average bit_rate == Round(nB, ((t,—t;)* 1000)) (D-10)
- Otherwise (t; isequal tot,), the following condition shall be true

average bit_rate == (D-11)

average frame rate indicates the average frame rate in units of frames/(256 seconds) of the target sub-sequence. All
NAL units of the target sub-sequence are taken into account in the calculation. The average frame rate is derived
according to the access unit removal time specified in subclause C.1.2. In the following, fC is the number of frames,
complementary field pairs and non-paired fields in the sub-sequence. t; is the removal time (in seconds) of the first
access unit of the sub-sequence (in decoding order), and t, is the removal time (in seconds) of the last access unit of the
sub-sequence (in decoding order).

When accurate statistics flagisequal to 1, the following conditions shall be fulfilled as follows.

- If tyisnot equa to t,, the following condition shall be true

average frame rate == Round(fC* 256 |, (t,—t;)) (D-12)
- Otherwise (t; isequal tot,), the following condition shall be true

average frame rate == (D-13)

num_referenced_subseqgs specifies the number of sub-sequences that contain pictures that are used as reference pictures
for inter prediction in the pictures of the target sub-sequence. num_referenced subsegs shall be in the range of 0 to 255,
inclusive.

ref_sub_seq_layer_num, ref_sub_seq_id, and ref_sub_seq_direction identify the sub-sequence that contains pictures
that are used as reference pictures for inter prediction in the pictures of the target sub-sequence. Depending on
ref_sub_seq direction, the following applies.

- If ref_sub_seq direction is equal to 0, a set of candidate sub-sequences consists of the sub-sequences whose
sub_seq idisequal to ref _sub seq id, which reside in the sub-sequence layer having sub_seq layer num equal to
ref_sub_seq layer_ num, and whose first picture in decoding order precedes the first picture of the target sub-
seguence in decoding order.

238 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- Otherwise (ref_sub_seq direction is equal to 1), a set of candidate sub-sequences consists of the sub-sequences
whose sub_seq id is equal to ref_sub_seq id, which reside in the sub-sequence layer having sub_seq layer num
equal to ref_sub_seq layer num, and whose first picture in decoding order succeeds the first picture of the target
sub-sequence in decoding order.

The sub-sequence used as a reference for the target sub-sequence is the sub-sequence among the set of candidate sub-
sequences whose first picture is the closest to the first picture of the target sub-sequence in decoding order.

D.2.14 Full-frame freeze SEI message semantics

The full-frame freeze SEI message indicates that the contents of the entire prior displayed video frame in output order
should be kept unchanged, without updating the display using the contents of the current decoded picture.

full_frame_freeze repetition_period indicates whether another full-frame freeze SEI message shall be present in the
bitstream and specifies the picture order count interval within which another full-frame freeze SEI message or a full-
frame freeze release SEI message will be present. The value of full_frame freeze repetition_period shall be in the range
of 0to 16 384, inclusive.

full_frame_freeze repetition_period equal to O specifies that the full-frame freeze SEI message applies to the current
decoded picture only.

full_frame_freeze repetition_period equal to 1 specifies that the full-frame freeze SEI message persists in output order
until any of the following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing full-frame freeze release SEI message is output having
PicOrderCnt() greater than PicOrderCnt(CurrPic).

full_frame_freeze repetition_period greater than 1 specifies that the full-frame freeze SEI message persists until any one
of the following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing a full-frame freeze release SEI message or a full-frame freeze
release SEI message is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) +
full_frame freeze repetition_period.

full_frame freeze repetition_period greater than 1 indicates that another full-frame freeze SEI message or a full-frame
freeze release SEI message shall be present for a picture in an access unit that is output having PicOrderCnt() less than
or equal to PicOrderCnt(CurrPic) + full_frame freeze repetition_period; unless a new coded video sequence begins
without output of such apicture.

D.2.15 Full-frame freezerelease SEI message semantics

The full-frame freeze rel ease SEI message indicates that the update of the displayed video frame should resume, starting
with the contents of the current decoded picture and continuing for subsequent pictures in output order. The full-frame
freeze release SEI message cancels the effect of any full-frame freeze SEI message sent with pictures that precede the
current picture in output order.

D.2.16 Full-frame snapshot SEI message semantics

The full-frame snapshot SEI message indicates that the current frame is labelled for use as determined by the application
as a still-image snapshot of the video content.

snapshot_id specifies a snapshot identification number. snapshot_id shall bein the range of 0to 2* - 1, inclusive.

Values of snapshot_id in the range of 0 to 255, inclusive, and in the range of 512 to 2*-1, inclusive, may be used as
determined by the application. Values of snapshot_id in the range of 256 to 511, inclusive, and in the range of 2** to 2%
1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of snapshot_id in the range
of 256 to 511, inclusive, or in the range of 2*! to 2°%-1, inclusive, shall ignore (remove from the bitstream and discard) it.

D.2.17 Progressiverefinement segment start SEI message semantics

The progressive refinement segment start SEI message specifies the beginning of a set of consecutive coded pictures that
is labelled as the current picture followed by a sequence of one or more pictures of refinement of the quality of the
current picture, rather than as a representation of a continually moving scene.

The tagged set of consecutive coded pictures shall continue until one of following conditionsis true. When a condition
below becomes true, the next slice to be decoded does not belong to the tagged set of consecutive coded pictures.

1. Thenext slice to be decoded belongsto an IDR picture.

DRAFT I TU-T Rec. H.264 (2002 E) 239

2. num_refinement_steps minusl is greater than 0 and the frame num of the next slice to be decoded is
(currFrameNum + num_refinement_steps minusl + 1) % MaxFrameNum, where currFrameNum is the value of
frame_num of the picture in the access unit containing the SEI message.

3. num_refinement_steps minusl is 0 and a progressive refinement segment end SElI message with the same
progressive_refinement_id as the one in this SEI message is decoded.

The decoding order of picture within the tagged set of consecutive pictures should be the same as their output order.
progressive refinement id specifies an identification number for the progressive refinement operation.
progressive refinement_id shall bein the range of 0to 2* - 1, inclusive.

Values of progressive refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 2* - 1, inclusive, may
be used as determined by the application. Values of progressive refinement_id in the range of 256 to 511, inclusive, and
in the range of 2* to 2%-1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of
progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 2** to 2% - 1, inclusive, shall ignore
(remove from the bitstream and discard) it.

num_refinement_steps minusl specifies the number of reference frames in the tagged set of consecutive coded
pictures as follows.

- If num_refinement_steps minusl is equal to O, the number of reference framesin the tagged set of consecutive coded
picturesis unknown.

- Otherwise, the number of reference frames in the tagged set of consecutive coded pictures is equal to
num_refinement_steps minusl + 1.

num_refinement_steps minusl shall be in the range of 0 to MaxFrameNum - 1, inclusive.

D.2.18 Progressive refinement segment end SEI message semantics

The progressive refinement segment end SEI message specifies the end of a set of consecutive coded pictures that has
been labelled by use of a progressive refinement segment start SEI message as an initial picture followed by a sequence
of one or more pictures of the refinement of the quality of theinitia picture, and ending with the current picture.

progressive refinement_id specifies an identification number for the progressive refinement operation.
progressive refinement_id shall bein the range of 0to 2% - 1, inclusive.

The progressive refinement segment end SEI message specifies the end of any progressive refinement segment
previously started using a progressive refinement segment start SEI message with the same value of
progressive_refinement_id.

Values of progressive refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 2* - 1, inclusive, may
be used as determined by the application. Values of progressive refinement_id in the range of 256 to 511, inclusive, and
in the range of 2% to 2% - 1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of
progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 2** to 2% - 1, inclusive, shall ignore
(remove from the bitstream and discard) it.

D.2.19 Motion-constrained slice group set SEI message semantics

This SEI message indicates that inter prediction over slice group boundaries is constrained as specified below. When
present, the message shall only appear where it is associated, as specified in subclause 7.4.1.2.3, with an IDR access unit.

The target picture set for this SEI message contains all consecutive primary coded pictures in decoding order starting
with the associated primary coded IDR picture (inclusive) and ending with the following primary coded IDR picture
(exclusive) or with the very last primary coded picture in the bitstream (inclusive) in decoding order when there is no
following primary coded IDR picture. The slice group set is a collection of one or more slice groups, identified by the
dlice _group_id[i] syntax element.

This SEI message indicates that, for each picture in the target picture set, the inter prediction process is constrained as
follows: No sample value outside the dlice group set, and no sample value at a fractional sample position that is derived
using one or more sample values outside the slice group set is used to inter predict any sample within the slice group set.

num_slice_groups_in_set_minusl + 1 specifies the number of slice groups in the slice group set. The alowed range of
num_slice_groups_in set minusl is O to num_slice groups minusl, inclusive. The alowed range of
num_slice_groups minusl is specified in Annex A.

dlice_group_id[i] identifies the slice group(s) contained within the slice group set. The allowed range is from 0 to
num_slice_groups_in _set minusl, inclusive. The size of the dice group id[i] syntax element is
Ceil(Log2(num_slice_groups minusl + 1)) bits.

240 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

exact_sample value match_flag equal to O indicates that, within the target picture set, when the macroblocks that do
not belong to the slice group set are not decoded, the value of each sample in the slice group set need not be exactly the
same as the value of the same sample when all the macroblocks are decoded. exact_sample value_match flag equal to 1
indicates that, within the target picture set, when the macroblocks that do not belong to the dlice group set are not
decoded, the value of each sample in the slice group set shall be exactly the same as the value of the same sample when
all the macroblocks in the target picture set are decoded.

Note - When disable_deblocking_filter_idc is equal to 2 in all dices in the target picture set, exact sample value match_flag
should be 1.

pan_scan_rect_flag equal to O specifies that pan_scan rect_id is not present. pan_scan rect_flag equal to 1 specifies
that pan_scan rect_id is present.

pan_scan_rect_id indicates that the specified slice group set covers at least the pan-scan rectangle identified by
pan_scan rect_id within the target picture set.
Note - Multiple motion_constrained_slice_group_set SEI messages may be associated with the same IDR picture. Consequently,
more than one dlice group set may be active within atarget picture set.
Note - The size, shape, and location of the slice groups in the dlice group set may change within the target picture set.

D.2.20 Reserved SEI message semantics

This message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. Encoders conforming
to this Recommendation | International Standard shall not send reserved SEI messages until and unless the use of such
messages has been specified by ITU-T | ISO/EC. Decoders conforming to this
Recommendation | International Standard that encounter reserved SEI messages shall discard their content without effect
on the decoding process, except as specified in future Recommendations | International Standards specified by ITU-T |
ISO/IEC. reserved sei__message payload_byte is abyte reserved for future use by ITU-T | ISO/IEC.

Annex E

Video usability information
(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies syntax and semantics of the VUI parameters of the sequence parameter sets.

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming
decoders are not required to process this information for output order conformance to this
Recommendation | International Standard (see Annex C for the specification of conformance). Some VUI parameters are
required to check bitstream conformance and for output timing decoder conformance.

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of
them) are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International
Standard. When present in the bitstream, VUI parameters shall follow the syntax and semantics specified in subclauses
7.3.2.1 and 7.4.2.1 and this annex. When the content of VUI parameters is conveyed for the application by some means
other than presence within the bitstream, the representation of the content of the VUI parameters is not required to use
the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually
present in the bitstream are counted.

DRAFT ITU-T Rec. H.264 (2002 E) 241

El

E.1l1

242

VUI syntax

VUI parameters syntax

vui_parameters() { Descriptor
aspect_ratio_info_present_flag u(l)
if(aspect_ratio_info_present_flag) {
aspect_ratio_idc u(8)
if(aspect_ratio_idc == Extended_SAR) {
sar_width u(16)
sar_height u(16)
}
}
overscan_info_present_flag u(l)
if(overscan_info_present flag)
overscan_appropriate flag u(l)
video_signal_type present_flag u(l)
if(video_signal_type present flag) {
video format u(3)
video_full_range flag u(l)
colour_description_present_flag u(l)
if(colour_description_present flag) {
colour_primaries u(8)
transfer_characteristics u(8)
matrix_coefficients u(8)
}
}
chroma_loc info_present_flag u(l)
if(chroma_loc_info_present flag) {
chroma_sample loc _type top_field ue(v)
chroma_sample loc_type bottom_field ue(v)
}
timing_info_present_flag u(l)
if(timing_info_present flag) {
num_units_in_tick u(32)
time_scale u(32)
fixed_frame rate flag u(l)
}
nal_hrd_parameters present_flag u(l)
if(nal_hrd parameters present flag)
hrd_parameters()
vcl_hrd_parameters present flag u(l)
if(vel_hrd_parameters present flag)
hrd_parameters()
if(nal_hrd_parameters present flag || vcl_hrd parameters present flag)
low_delay_hrd_flag u(1)
pic_struct_present_flag u(l)
bitstream_restriction_flag u(1)

if(bitstream_restriction_flag) {

DRAFT ITU-T Rec. H.264 (2002 E)

E.1.2

E.2

E.21

DRAFT ISO/IEC 14496-10 : 2002 (E)

motion_vectors over_pic_boundaries flag 0 | u(l)
max_bytes per_pic_denom 0 | ugv)
max_bits per_mb_denom 0 | ugv)
log2_max_mv_length_horizontal 0 | ugv)
log2_max_mv_length_vertical 0 | uev)
num_reorder_frames 0 | ugv)
max_dec frame buffering 0 | ugv)
}
}
HRD parameters syntax
hrd_parameters() { C | Descriptor
cpb_cnt_minusl 0 | ugv)
bit_rate scale 0 |u®
cpb_size scale 0 |u®
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minusl; SchedSelldx++) {
bit_rate value minusl[SchedSelldx] 0 | ugv)
cpb_size value minusl| SchedSelldx] 0 | ueg(v)
cbr_flag[SchedSelldx] 0 |u®
}
initial_cpb_removal_delay length_minusl 0 | u®b)
cpb_removal_delay_length_minusl 0 |u®)
dpb_output_delay_length_minusl 0 | u®b)
time_offset_length 0 |u®)

VUI semantics

VUI parameter s semantics

aspect_ratio_info_present_flag equal to 1 specifies that aspect_ratio_idc is present. aspect ratio_info_present_flag
equal to O specifies that aspect_ratio_idc is not present.

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E-1 shows the meaning of the
code. When aspect_ratio_idc indicates Extended SAR, the sample aspect ratio is represented by sar_width and
sar_height. When the aspect_ratio_idc syntax element is not present, aspect_ratio_idc value shall be inferred to be equal

to 0.

DRAFT ITU-T Rec. H.264 (2002 E)

243

Table E-1 — Meaning of sample aspect ratio indicator

aspect_ratio_idc | Sample aspect ratio (informative)
Examples of use
0 Unspecified
1 11 1280x720 16:9 frame without overscan
(“square”) 1920x1080 16:9 frame without overscan (cropped from 1920x1088)
640x480 4:3 frame without overscan
2 12:11 720x576 4:3 frame with horizontal overscan
352x288 4.3 frame without overscan
3 10:11 720x480 4:3 frame with horizontal overscan
352x240 4:3 frame without overscan
4 16:11 720x576 16:9 frame with horizontal overscan
540x576 4:3 frame with horizontal overscan
5 40:33 720x480 16:9 frame with horizontal overscan
540x480 4:3 frame with horizontal overscan
6 24:11 352x576 4.3 frame without overscan
540x576 16:9 frame with horizontal overscan
7 20:11 352x480 4:3 frame without overscan
480x480 16:9 frame with horizontal overscan
8 32:11 352x576 16:9 frame without overscan
9 80:33 352x480 16:9 frame without overscan
10 18:11 480x576 4.3 frame with horizontal overscan
11 15:11 480x480 4:3 frame with horizontal overscan
12 64.33 540x576 16:9 frame with horizontal overscan
13 160:99 540x480 16:9 frame with horizontal overscan
14..254 Reserved
255 Extended SAR

sar_width indicates the horizontal size of the sample aspect ratio (in arbitrary units).
sar_height indicates the vertical size of the sample aspect ratio (in the same arbitrary units as sar_width).

sar_width and sar_height shall be relatively prime or equal to 0. When aspect_ratio_idc is equal to O or sar_width is
equal to 0 or sar_height is equal to 0, the sample aspect ratio shall be considered unspecified by this Recommendation |
International Standard.

overscan_info _present_flag equal tol specifies that the overscan appropriate flag is present. When
overscan_info_present flag is equal to0 or is not present, the preferred display method for the video signal is
unspecified.

overscan_appropriate flag equal to 1 indicates that the cropped decoded pictures output are suitable for display using
overscan. overscan_appropriate flag equal to O indicates that the cropped decoded pictures output contain visually
important information in the entire region out to the edges of the cropping rectangle of the picture, such that the cropped
decoded pictures output should not be displayed using overscan. Instead, they should be displayed using either an exact
match between the display area and the cropping rectangle, or using underscan.
NOTE — For example, overscan_appropriate_flag equd to 1 might be used for entertainment television programming, or for alive
view of people in a videoconference, and overscan_appropriate flag equal to O might be used for computer screen capture or
security camera content.

video_signal_type present flag equal tol specifies that video format, video full range flag and
colour_description_present flag are present. video signal_type present flag equal to 0, specify that video format,
video_full_range_flag and colour_description_present_flag are not present.

video_format indicates the representation of the pictures as specified in Table E-2, before being coded in accordance
with this Recommendation | International Standard. When the video_format syntax element is not present, video_format
value shall be inferred to be equal to 5.

244 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table E-2 — Meaning of video_format

video format | Meaning

0 Component

PAL

NTSC

SECAM

MAC

Unspecified video format
Reserved

Reserved

N|O|O|R[WIN|F

video_full_range flag indicates the black level and range of the luma and chroma signals as derived from E'y, E'pg, and
E’ pr analogue component signals, as follows.

- If video_full_range flagisequal to O,

Y =Round(219* E’y + 16) (E-1)
Cb = Round(224 * E'pg + 128) (E-2)
Cr=Round(224 * E'pg + 128) (E-3)

- Otherwise (video_full_range flagisequal to 1),

Y =Round(255* E'y) (E-4)
Cb=Round(255 * E'pg + 128) (E-5)
Cr=Round(255* E'pg + 128) (E-6)

When the video_full_range flag syntax element is not present, video full_range flag value shall be inferred to be equal
to 0.

colour_description_present_flag equal tol specifies that colour_primaries, transfer characteristics and
matrix_coefficients are present. colour_description_present flag equal toO specifies that colour primaries,
transfer_characteristics and matrix_coefficients are not present.

colour_primariesindicates the chromaticity coordinates of the source primaries as specified in Table E-3 in terms of the
CIE 1931 definition of x and y as specified by |SO/CIE 10527.

DRAFT ITU-T Rec. H.264 (2002 E) 245

Table E-3— Colour primaries

Value Primaries
0 Reserved
1 ITU-R Recommendation BT.709
primary X y
green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white D65 0.3127 0.3290
2 Unspecified
Image characteristics are unknown or as determined by the
application.
3 Reserved
4 ITU-R Recommendation BT.470-2 System M
primary X y
green 0.21 0.71
blue 0.14 0.08
red 0.67 0.33
white C 0.310 0.316
5 ITU-R Recommendation BT.470-2 System B, G
primary X y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white D65 0.3127 0.3290
6 Society of Motion Picture and Television Engineers 170M
primary X y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290
7 Society of Motion Picture and Television Engineers 240M (1987)
primary X y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290
8 Generic film (colour filters using IHluminant C)
primary X y
green 0.243 0.692 (Wratten 58)
blue 0.145 0.049 (Wratten 47)
red 0.681 0.319 (Wratten 25)
white C 0.310 0.316
9-255 Reserved

When the colour_primaries syntax element is not present, the value of colour_primaries shall be inferred to be equal to 2
(the chromaticity is unspecified or is determined by the application).

transfer_characteristics indicates the opto-electronic transfer characteristic of the source picture as specified in
Table E-4 asafunction of alinear optical intensity input L. with an analogue range of 0 to 1.

246 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table E-4 — Transfer characteristics

Value Transfer Characteristic
0 Reserved
1 ITU-R Recommendation BT.709
V =1.099 L 045 - 0,099 for 1>= L, >= 0.018
V =4500L, for 0.018 > L,
2 Unspecified
Image characteristics are unknown or are determined by the
application.
3 Reserved
4 ITU-R Recommendation BT.470-2 System M
Assumed display gamma 2.2
5 ITU-R Recommendation BT.470-2 System B, G
Assumed display gamma 2.8
6 Society of Motion Picture and Television Engineers 170M
V =1.099 L 045 - 0,099 for 1>= L, >= 0.018
V =4500L, for 0.018 > L,
7 Society of Motion Picture and Television Engineers 240M (1987)
Vv =11115..045.0.1115 for Lo>= 0.0228
V=40L, for 0.0228 > L
8 Linear transfer characteristics
V=L
9 Logarithmic transfer characteristic (100:1 range)
V=10-LoglO(L.), 2 for1>=L.>=0.01
V =0.0 for 0.01> L.
10 Logarithmic transfer characteristic (316.22777:1 range)
V=10-LoglO(L.), 25 for 1 >= L. >=0.0031622777
V=00 for 0.0031622777 > L.
11..255 Reserved

When the transfer_characteristics syntax element is not present, the value of transfer_characteristics shall be inferred to
be equal to 2 (the transfer characteristics are unspecified or are determined by the application).

matrix_coefficients describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and
red primaries, as specified in Table E-5.

Using the following definitions:

E'r, E'G, and E'g are analogue with valuesin the range of 0 to 1.

White is specified as having E'r equal to 1, E' equal to 1, and E’ equal to 1.

Then:

Ev=Kr*Er+(1-Kr—Kg)*Eg+Kg* Eg

Ep=05*(Eg—FEv)+(1-Kg)

Em=05*(Er-Ev)+(1-Kgr)

(E-7)
(E-8)

(E-9)

NOTE — Then E’y is analogue with valuesin the range of 0 to 1, E'pg and E’ g are analogue with valuesin the range of -0.5 to 0.5,
and whiteis equivalently givenby E'y =1, E'pg =0, E'pr = 0.

DRAFT ITU-T Rec. H.264 (2002 E)

247

Table E-5 - Matrix coefficients

Value Matrix

0 Reserved

1 ITU-R Recommendation BT.709
Kr = 0.2126; Kg = 0.0722

2 Unspecified
Image characteristics are unknown or are determined by the
application.

3 Reserved

4 Federal Communications Commission
Kr =0.30; Kg = 0.11

5 ITU-R Recommendation BT.470-2 System B, G:
Kr=0.299; Kg =0.114

6 Society of Motion Picture and Television Engineers 170M
Kr=0.299; Kg =0.114

7 Society of Motion Picture and Television Engineers 240M (1987)
Kr=0.212; Kg = 0.087

8-255 Reserved

When the matrix_coefficients syntax element is not present, the value of matrix_coefficients shall be inferred to be equal
to 2.

chroma_loc info_present_flag equal tol specifies that chroma_sample_loc _type top field and
chroma_sample_loc_type bottom_field are present. chroma_loc_info_present flag equal to O specifies that
chroma_sample loc_type top field and chroma sample loc type bottom field are not present.

chroma_sample loc type top_field and chroma _sample loc type bottom field specify the location of chroma
samples for the top field and the bottom field as shown in Figure E-1. The value of chroma_sample loc type top field
and chroma sample loc type bottom field shall be in the range of 0 to5, inclusivee When the
chroma_sample loc_type top field and chroma sample loc_type bottom field are not present, the values of
chroma_sample_loc_type top field and chroma_sample loc_type bottom field shall be inferred to be equal to O.

NOTE - When coding progressive source material, chroma_sample_loc_type top field and
chroma_sample_loc_type_bottom_field should have the same value.

248 DRAFT ITU-T Rec. H.264 (2002 E)

=0 X
oV
KAO

=0 X
oV
AL

=0 X
oV
KAO

=0 X
oV
KIAL

=0 X
oV
KAO

=0 X
OAV
AL

=0 X
oV
KAO

=0 X
OAV
KIAL

=0 X
oV
KAO

=0 X
oV
AL

=0 X
oV
KAO

=0 X
oV
KIAL

DRAFT ISO/IEC 14496-10 : 2002 (E)

=0 X
oV
KAO

=0 X
oV
AL

=0 X
oV
KAO

=0 X
oV
KIAL

, QMSBUABMRQRI YA P ER®C]
| XP DMDP SGISRVMRQNGFDMRQVT]

>< [XP DMDP SBARSIIHG D [/ XP DVDP SGERWRP [IIHG

&KURP DMDP SOk
Z KHUHIUWD, O @EFDWVDERWRP OIHOGVDP SGIWSH
DQGELRIMMICG FOWMVDMRSIIHGVDP SGRVSH

O BKWRP DVDP SBRSH O

[& KURP DVDP SBIWSH

O [& KURP DVDP SBRVSH v [& KURP DVDP SEBRSH

<> [B.KURP DYDP SBRMSH A [&.KURP DYDP SORMSH

Figure E-1 — L ocation of chroma samplesfor top and bottom fields as a function of
chroma_sample loc_type top_field and chroma_sample loc_type bottom_field

timing_info_present_flag equal to 1 specifies that num_units_in_tick, time_scale and fixed_frame rate flag are present
in the bitstream. timing_info_present flag equal toO specifies that num_units in tick, time scale and
fixed_frame rate flag are not present in the bitstream.

num_units _in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to
one increment (called a clock tick) of a clock tick counter. num_units in_tick shall be greater than 0. A clock tick isthe
minimum interval of time that can be represented in the coded data. For example, when the clock frequency of a video
signal is 30000, 1001 Hz, time_scale may be 30 000 and num_units in_tick may be 1001. See Equation C-1.

time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures
time using a27 MHz clock has atime_scale of 27 000 000. time_scale shall be greater than 0.

fixed_frame rate flag equal to 1 indicates that the temporal distance between the HRD output times of any two
consecutive pictures in output order is constrained as follows. fixed_frame rate flag equal to O indicates that no such
constraints apply to the temporal distance between the HRD output times of any two consecutive pictures in output order.

When fixed_frame_rate flagisequal to 1, for al n where n indicates the n-th picture in output order and picture n is not
the last picture in the bitstream in output order, the value of Dt; gn(N) as specified in Equation C-13, shall obey the
following constraint,

thi,dpb(n) == Dto,dpb(n) , DeltaTfiDivisor (E-].O)

DRAFT ITU-T Rec. H.264 (2002 E) 249

where DeltaTfiDivisor is specified by Table E-6 based on the value of pic_struct present flag, field pic flag, and
pic_struct for picture n. Entries marked "-" in Table E-6 indicate a lack of dependence of DeltaTfiDivisor on the
corresponding syntax element.

The value computed for Dt gp(N') shall be the same for @l n> 0. and equal to num_units_in_tick , time_scale.

Table E-6 —Divisor for computation of Dty gpn(N')

pic_struct_present_flag | field_pic flag | pic_struct | DeltaTfiDivisor
0 1 - 1
1 - 1 1
1 - 2 1
0 0 - 2
1 - 0 2
1 - 3 2
1 - 4 2
1 - 5 3
1 - 6 3
1 - 7 4
1 - 8 6

nal_hrd_parameters present_flag equal to 1 specifies that NAL HRD parameters (pertaining to Type |l bitstream
conformance) are present. nal_hrd_parameters present_flag equal to O specifies that NAL HRD parameters are not
present.

NOTE — When na_hrd_parameters present_flag is equal to O, the conformance of the bitstream cannot be verified without
provision of the NAL HRD parameters, including the NAL sequence HRD parameter information and al buffering period and
picture timing SEI messages, by some means not specified in this Recommendation | International Standard

When nal_hrd_parameters present flag is equal to 1, NAL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag.

The variable NalHrdBpPresentFlag is derived as follows.

- If any of the following is true, the value of NalHrdBpPresentFlag shall be set equal to 1.
— nal_hrd_parameters present flag is present in the bitstream and is equal to 1

— the need for presence of buffering periods for NAL HRD operation to be present in the bitstream in buffering
period SEI messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

- Otherwise, the value of NalHrdBpPresentFlag shall be set equal to 0.

vcl_hrd_parameters present_flag equal to1l specifies that VCL HRD parameters (pertaining to all bitstream
conformance) are present. vcl_hrd parameters present flag equal to O specifies that VCL HRD parameters are not
present.

NOTE — When vcl_hrd_parameters present_flag is equal to O, the conformance of the bitstream cannot be verified without
provision of the VCL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in
this Recommendation | International Standard

When vcl_hrd_parameters_present_flag is equal to 1, VCL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag.

The variable VclHrdBpPresentFlag is derived as follows.

- If any of the following istrue, the value of VclHrdBpPresentFlag shall be set equal to 1.
— nal_hrd parameters present flag is present in the bitstream and is equal to 1

— the need for presence of buffering periods for VCL HRD operation to be present in the bitstream in buffering
period SEI messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

- Otherwise, the value of VclHrdBpPresentFlag shall be set equal to 0.
The variable CpbDpbDelaysPresentFlag is derived as follows.

250 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- If any of the following istrue, the value of CpbDpbDelaysPresentFlag shall be set equal to 1.
— nal_hrd parameters present flag is present in the bitstream and is equal to 1
— vcl_hrd_parameters present flagis present in the bitstream and is equal to 1

— the need for presence of CPB and DPB output delays to be present in the bitstream in picture timing SEI
messages is determined by the application, by some means not specified in this Recommendation | International
Standard.

- Otherwise, the value of CpbDpbDelaysPresentFlag shall be set equal to 0.

low_delay hrd_flag specifies the HRD operational mode as specified in Annex C. When fixed_frame rate flag is
equal to 1, low_delay_hrd flag shall be equal to O.
NOTE - When low_delay_hrd_flag is equal to 1, "big pictures’ that violate the nominal CPB removal times due to the number of
bits used by an access unit are permitted. It is expected, but not required, that such "big pictures’ occur only occasionally.

pic_struct_present_flag equal to 1 specifies that picture timing SEI messages (subclause D.2.2) are present that include
the pic_struct syntax element. pic_struct present flag equal to O specifies that the pic_struct syntax element is not
present in picture timing SEI messages.

bitstream_restriction_flag equal to 1, specifies that the following sequence bitstream restriction parameters are
present. bitstream restriction flag equal to O, specifies that the following sequence bitstream restriction parameters are
not present.

motion_vectors over_pic_boundaries flag equal to O indicates that no sample outside the picture boundaries and no
sample at a fractional sample position whose value is derived using one or more samples outside the picture boundaries
is used to inter predict any sample. motion_vectors over pic_boundaries flag equal to 1 indicates that one or more
samples outside picture boundaries may be used in inter prediction. When the motion_vectors_over_pic_boundaries_flag
syntax element is not present, motion_vectors over_pic_boundaries flag value shall be inferred to be equal to 1.

max_bytes per_pic_denom indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units
associated with any coded picture in the sequence.

The number of bytes that represent a picture in the NAL unit stream is specified for this purpose as the total number of
bytes of VCL NAL unit data (i.e., the total of the NumBytesinNALunit variables for the VCL NAL units) for the picture.
The value of max_bytes per_pic_denom shall be in the range of 0 to 16, inclusive.

Depending on max_bytes per pic_denom the following applies.
- If max_bytes per_pic_denom isegual to O, no limits are indicated.

- Otherwise (max_bytes per_pic_denom is not equal to 0), no coded picture shall be represented in the sequence by
more than the following number of bytes.

(PicSizelnMbs* 256 * ChromaFormatFactor) , max_bytes per_pic_denom (E-11)

When the max_bytes per pic_denom syntax element is not present, the value of max_bytes per pic_denom shall be
inferred to be equal to 2.

max_bits per_mb_denom indicates the maximum number of coded bits of macroblock layer() data for any
macroblock in any picture of the sequence. The value of max_bits per_ mb_denom shall be in the range of 0 to 16,
inclusive.

Depending on max_bits per mb_denom the following applies.
- If max_bits per_mb_denom isequal to 0, no limit is specified.

- Otherwise (max_bits per mb_denom is not equal to 0), no coded macroblock layer() shall be represented in the
bitstream by more than the following number of bits.

(2048 * ChromaFormatFactor + 128) , max_bits per_mb_denom (E-12)

Depending on entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows.

- If entropy_coding_mode flag is equal to 0, the number of bits of macroblock_layer() datais given by the number of
bits in the macroblock_layer() syntax structure for a macroblock.

- Otherwise (entropy_coding_mode flag is equal to 1), the number of bits of macroblock layer() data for a
macroblock is given by the number of times read bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3 when
parsing the macroblock_layer() associated with the macroblock.

DRAFT ITU-T Rec. H.264 (2002 E) 251

When the max_bits per_ mb_denom is not present, the value of max_bits per_ mb_denom shall be inferred to be equal
to 1.

log2_max_mv_length_horizontal and log2_max_mv_length_vertical indicate the maximum absolute value of a
decoded horizontal and vertical motion vector component, respectively, in ¥4 luma sample units, for al pictures in the
sequence. A value of n asserts that no absolute value of a motion vector component is greater than 2" units of ¥4 luma
sample displacement. The value of log2_max_mv_length_horizontal shall be in the range of 0 to 16, inclusive. The
vaue of log2 max_mv_length vertical shall be in the range of 0 tol6, inclusive. When
log2_max_mv_length horizontal is not present, the values of log2_max_mv_length horizonta and
log2_max_mv_length_vertical shall beinferred to be equal to 16.

NOTE - The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by profile
and level limits as specified in Annex A.

num_reorder_frames indicates the maximum number of frames, complementary field pairs, or non-paired fields that
precede any frame, complementary field pair, or non-paired field in the sequence in decoding order and follow it in
output order. The value of num_reorder_frames shall be in the range of 0 to max_dec_frame_buffering, inclusive. When
the num_reorder_frames syntax element is not present, the value of num_reorder_frames value shall be inferred to be
equal to max_dec frame_buffering.

max_dec_frame_buffering specifies the required size of the HRD decoded picture buffer (DPB) in units of frame
buffers. The sequence shall not require a decoded picture buffer with size of more than max_dec_frame_buffering frame
buffers to enable the output of decoded pictures at the output times specified by dpb_output_delay of the picture timing
SEI messages. The value of max_dec frame buffering shall be in the range of 0 to MaxDpbSize, inclusive (as specified
in subclause A.3.1). When the max_dec frame buffering syntax element is not present, the value of
max_dec_frame_buffering shall be inferred to be equal to MaxDpbSize.

E.2.2 HRD parameters semantics

cpb_cnt_minusl plus 1 specifies the number of alternative CPB specifications in the bitstream. The value of
cpb_cnt_minusl shall be in the range of 0 to 31, inclusive. When low_delay hrd_flag is equa to 1, cpb_cnt_minusl
shall be equal to 0. When cpb_cnt_minusl is not present, it shall be inferred to be equal to 0.

bit_rate scale (together with bit_rate value minusl] SchedSelldx]) specifies the maximum input bit rate of the
SchedSelldx-th CPB.

cpb_size scale (together with cpb_size value minusl] SchedSelldx]) specifies the CPB size of the SchedSelldx-th
CPB.

bit_rate value minusl| SchedSelldx] (together with bit_rate scale) specifies the maximum input bit rate for the
SchedSelldx-th CPB. bit_rate value minusl[SchedSelldx] shall be in the range of 0 to 2*2- 2, inclusive. For any
SchedSelldx > 0, bit_rate value minusl| SchedSelldx] shall be greater than bit_rate value minusl] SchedSelldx - 1].
The bit rate in bits per second is given by

BitRate] SchedSelldx] = (bit_rate value minusl[SchedSelldx] + 1) * 26 *bitraesae) (E-13)
When the bit_rate value minusl] SchedSelldx] syntax element is not present, BitRate] SchedSelldx] shall be inferred
to be equal to 1000 * MaxBR for VCL HRD parameters.

When the bit_rate value minusl] SchedSelldx] syntax element is not present, BitRate] SchedSelldx] shall be inferred
to be equal to 1200 * MaxBR for NAL HRD parameters.

cpb_size value minusl| SchedSelldx] is used together with cpb _size scale to specify the SchedSelldx-th CPB size.
cpb_size value minusl| SchedSelldx] shall be in the range of 0 to 2*2 - 2, inclusive. For any SchedSelldx greater than
0, cpb_size value minusl| SchedSelldx] shall be lessthan or equal to cpb_size value minusl| SchedSelldx -1].

The CPB sizein hitsis given by

CpbSize[SchedSelldx] = (cpb_size value minusl SchedSelldx] + 1) * 2(4* cpbszescae) (E-14)
When the cpb_size value minusl] SchedSelldx] syntax element is not present, CpbSize[SchedSelldx] shall be
inferred to be equal to 1000 * MaxCPB for VCL HRD parameters.

When the cpb_size value minusl] SchedSelldx] syntax element is not present, CpbSize[SchedSelldx] shall be
inferred to be equal to 1200 * MaxCPB for NAL HRD parameters.

For VCL HRD parameters, there shall be at least one value of SchedSelldx for which BitRate] SchedSelldx] <=
1000* MaxBR and CpbSize[SchedSelldx] <= 1000 * MaxCPB (as specified in subclause A.3.1).

252 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

For NAL HRD parameters, there shall be at least one value of SchedSelldx for which CpbSize] SchedSelldx | <=
1200*MaxCPB and BitRate] SchedSelldx | <= 1200*MaxBR.

cbr_flag[SchedSelldx] equal to O specifies that to decode this bitstream by the HRD using the SchedSelldx-th CPB
specification, the hypothetical stream delivery scheduler (HSS) operates in an intermittent bit rate mode.
cbr_flag[SchedSelldx] equal to 1 specifies that the HSS operates in a constant bit rate (CBR) mode. When the
cbr_flag[SchedSelldx] syntax element is not present, the value of cbr_flag shall be inferred to be equal to 0.

initial_cpb_removal_delay_length_minusl specifies the length in bits of the initial_cpb_removal_delay[SchedSelldx]
and initial_cpb removal_delay offset] SchedSelldx] syntax elements of the buffering period SEI message. The length
of initial_cpb_removal_delay[SchedSelldx] and of initiad_cpb removal_delay offset] SchedSelldx] s
initial_cpb _removal_delay length_minusl + 1. When the initial_cpb_removal_delay length minusl syntax element is
present in more than one hrd_parameters() syntax structure within the VUI parameters syntax structure, the value of the
initial_cpb_removal_delay length_minusl parameters shall be equal in both hrd_parameters() syntax structures. When
theinitial_cpb_removal_delay length_minusl syntax element is not present, it shall be inferred to be equal to 23.

cpb_removal_delay length_minusl specifies the length in bits of the cpb_removal_delay syntax element. The length
of the cpb_removal_delay syntax element of the picture timing SElI message is cpb_removal_delay_length_ minusl + 1.
When the cpb_removal_delay length_minusl syntax element is present in more than one hrd_parameters() syntax
structure within the VUI parameters syntax structure, the value of the cpb_removal_delay length minusl parameters
shall be equal in both hrd_parameters() syntax structures. When the cpb_removal_delay length_minusl syntax element
isnot present, it shall be inferred to be equal to 23.

dpb_output_delay length_minusl specifies the length in bits of the dpb_output_delay syntax element. The length of
the dpb_output_delay syntax element of the picture timing SEI message is dpb_output_delay length_minusl + 1. When
the dpb_output_delay length_minusl syntax element is present in more than one hrd_parameters() syntax structure
within the VUI parameters syntax structure, the value of the dpb_output_delay length_minusl parameters shall be equal
in both hrd_parameters() syntax structures. When the dpb_output_delay length_minusl syntax element is not present, it
shall beinferred to be equal to 23.

time_offset_length greater than O specifies the length in bits of the time_offset syntax element. time_offset_length equal
to O specifies that the time_offset syntax element is not present. When the time_offset_length syntax element is present
in more than one hrd_parameters() syntax structure within the VUI parameters syntax structure, the value of the
time offset_length parameters shall be equal in both hrd_parameters() syntax structures. When the time_offset_length
syntax element is not present, it shall be inferred to be equal to 24.

DRAFT I TU-T Rec. H.264 (2002 E) 253

